943 resultados para the Okinawa Trough
Resumo:
For the first time, an element abundance table of China Shelf Sea sediments is published based on 286 samples from the continental shelf of China analyzed for 62 chemical elements. The shelf sediments result from the redistribution of sediments from China over the continental shelf. On the basis of comparison of element abundances among the China shelf samples, hemipelagic Okinawa Trough samples, and pelagic brown clay from the West Pacific, it is clear that each has its own elemental characteristics. Hg anomaly enrichment in Okinawa Trough sediments may be used as an indicator of hydrothermal activity.
Resumo:
The Yellow Sea Warm Current (YSWC) is one of the principal currents in the Yellow Sea in winter. Former examinations on current activity in the Yellow Sea have not observed a stable YSWC because of the positioning of current meters. To further understand the YSWC, a research cruise in the southern Yellow Sea was carried out in the winter of 2006/2007. Five moorings with bottom-mounted acoustic Doppler current profilers (ADCP) were deployed on the western side of the central trough of the Yellow Sea. The existence and distributional features of the YSWC were studied by analyzing three ADCP moorings in the path of the YSWC in conjunction with conductivity-temperature-depth (CTD) data over the observed area in the southern Yellow Sea. The results show the following. (1) The upper layer of the YSWC is strongly influenced by winter cold surge; its direction and speed often vary along a south-north axis when strong cold surges arrive from the north. (2) The YSWC near the bottom layer is a stable northwest flowing current with a speed of 4 to 10 cm/s. By combining the analyses of the CTD data, we speculate that the core of the YSWC may lie near the bottom. (3) On a monthly average timescale, the YSWC is stably oriented with northward flow from the sea surface to the sea floor.
Resumo:
作为大陆向大洋的过渡带,由于享有得天独厚的沉积环境,具有独特的构造特征以及与黑潮主流之间的密切关系,一直以来,冲绳海槽都是中外学者研究的重点靶区。2005年5月,由我国与法国联合主持的IMAGES 航次在台湾东北海域获取MD05-2908柱状岩芯(24º48.04′N,122 º29.35′E,水深为1275米),该柱状岩芯为一34.17米长高质量的连续沉积记录,岩性以深灰色粘土质粉砂为主,含水量较高,粘性、可塑性强,含有数层厚度不等的夹层。岩芯年龄模式依据17个AMS 14C定年数据建立,岩芯底部年代约6.8ka,为中全新世以来的沉积。在实验室对样品按照2cm的间隔进行分割后分别进行了粒度分析、粘土矿物提取与测试、碎屑矿物提取与鉴定、常微量元素和稀土元素分析等实验。 粒度分析结果显示,MD05-2908岩芯沉积物粒度垂向上总体比较均一,以细颗粒的粘土与粉砂质为主,但不同层位也稍有差别,表现为底部层位粒度较粗,含砂量较高,说明底部沉积环境比较复杂。粘土粒级(<2µm)矿物主要由四种粘土矿物和少量石英、长石碎屑组成。其中,粘土矿物相对含量变化中,伊利石(~68%)与绿泥石(~17%)构成主要成分,含有蒙皂石(~10%)和高岭石(~5%)。结合台湾东北外海表层沉积物的研究,利用粘土矿物伊利石/蒙皂石和绿泥石/高岭石比值得出岩芯粘土矿物主要为陆源碎屑粘土矿物,其源岩主要为台湾中央山脉的变质岩与台湾东部的沉积岩。重矿物分析共选取了41个层位,对63~250μm粒级的样品在实体镜和偏光显微镜下进行鉴定,结果显示,岩芯重矿物主要由绿泥石(29%)、普通角闪石(22%)、白云石(10%)、黑云母(8%)、绿帘石(7%)、白云母(7%)、褐铁矿(5%)等组成。稳定矿物少,矿物成熟度低。碎屑矿物风化程度低,磨蚀不明显,分选较差,表明沉积物来自于近源,后期改造作用不明显。常量元素分析结果表明,SiO2 、Al2O3和Fe2O3是岩芯沉积物中的最主要组分,这三种组分占沉积物总量的82%左右。 整个岩芯自下而上各常量组分变化不大,其平均值与东海陆架沉积物基本接近。微量元素变化比较明显, Ba、Cr、Cu、Zn元素的含量比东海陆架沉积物中的含量要高,而Sr的含量明显低于东海陆架。对常微量元素的R型因子分析表明,常量元素SiO2、Al2O3、Fe2O3、MgO和K2O,微量元素Cr、Cu、Ni、Zn、Pb、Rb和Mn可代表陆源物质;常量元素CaO和微量元素Sr、Ba可代表生物源物质。岩芯沉积物以陆源物质为主,生源物质的贡献起次要作用。岩芯沉积物中稀土元素总量平均为169.87×10-6,并且轻稀土含量均高于重稀土,LREE/HREE平均值为10.14,表明了轻稀土对稀土总量的贡献远高于重稀土,沉积物富集轻稀土,反映了沉积物的陆源特征。 岩芯MD05-2908中全新世以来平均5m/ka的高沉积速率主要源于丰富的物质供应和适宜的沉积环境。岩芯细粒级沉积物中,地球化学特征表明沉积物主要来源于陆源碎屑物质,粘土矿物特征与台湾东部陆源物质相同;粗粒级沉积物中,重矿物含量及矿物特征也表明岩芯沉积物粗颗粒组分主要来自于近源沉积。台湾宜兰境内的兰阳溪每年携带约一千万吨冲积物入海成为研究区重要的物质来源。由于受到黑潮的强烈影响,逆时针涡流及底层反向流的存在是岩芯高沉积速率重要控制因素。因此,利用动力分选的粉砂组分可以用来示踪古洋流强度,结果显示,6.8ka以来黑潮的强弱波动频繁,并表现出一定的旋回性变化,频谱分析表明,其具有的千年尺度周期(1500a)、百年尺度周期(604a、242a、192a、153a、133a)与十年尺度周期(22a)的周期性变化均与太阳辐射量变化有密切关系,因此,黑潮的强弱变化在大背景上是由太阳活动所控制的。 根据测年资料可以识别出岩芯存在5期快速堆积事件,这与区域性降水增加有关,降雨量增加导致陆源物质输入的增加。另外,岩芯位于大陆斜坡区,附近存在有三支海底峡谷,并且地震活动频繁,沉积在宜兰陆架及东海陆架处的浅海沉积物由于受到地震、风暴等活动的影响而受扰动崩塌、因重力作用而向低处输送,产生二次侵蚀并经由海底峡谷搬运到冲绳海槽南段堆积,使得沉积环境更为复杂,但同时也为冲绳海槽提供了丰富的物质供应。
Resumo:
The vertical distribution and stage-specific abundance of Calanus sinicus were investigated on three key transects in the southern Yellow Sea and the northern East China Sea in August 1999. The results showed that in summer C. sinicus shrank its distribution area to the central cold (less than or equal to10degreesC) bottom water in the Yellow Sea, i.e. the Yellow Sea Cold Bottom Water, remaining in high abundance (345.7 ind m(-3)). In the northern East China Sea on a transect from the mouth of the Yangtze River to the Okinawa trench, only a few individuals appeared in the inner side and none had been found either in the upper layer or in the deep layer of the outer shelf area. The population of C. sinicus in YSCBW consisted of mainly adults (46.83%) and C5 (37.41%). C1-C4 only accounted for 15.76%. The low proportion of the earlier copepodite stages and the high female:male ratio (11.39) indicated that the reproduction of C. sinicus in YSCBW was at a very low level due to the low temperature and low food concentration. It is concluded that the dramatic decrease of C. sinicus population in the shelf area of China seas in summer is caused by the shrinkage of its distribution area and the YSCBW served as an oversummering site.
Resumo:
The North Sea ecosystem has recently undergone dramatic changes, observed as altered biomass of individual species spanning a range of life forms from algae to birds, with evidence for an approximate doubling in the abundance of both phytoplankton and benthos as part of a regime shift after 1987. Remarkably, these changes, in part recorded in the Phytoplankton Colour Index of the Continuous Plankton Recorder (CPR) survey, are notable as episodic shifts occurring in 1988/89 and 1998 imposed on a gradual decadal trend. These biological events are shown to be a response to coincident changes in oceanic input and water temperature. Geostrophic transports have been calculated from a hydrographic section across the Rockall Trough, and a time series of seasurface temperature derived from satellite observations. The 2 pulses of oceanic incursion into the North Sea in circa 1988 and 1998 coincided with strong northward advection of anomalously warm water at the edge of the continental shelf.
Resumo:
We present the first remotely operated vehicle investigation of megabenthic communities (1004-1695 m water depth) on the Hebrides Terrace Seamount (Northeast Atlantic). Conductivity-temperature-depth casts showed rapid light attenuation below the summit and an oceanographic regime on the flanks consistent with an internal tide, and high short-term variability in water temperature, salinity, light attenuation, aragonite and oxygen down to 1500 m deep. Minor changes in species composition (3-14%) were explained by changes in depth, substratum and oceanographic stability, whereas environmental variability explained substantially more variation in species richness (40-56%). Two peaks in species richness occurred, the first at 1300-1400 m where cooler Wyville Thomson Overflow Water (WTOW) mixes with subtropical gyre waters and the second at 1500-1600 m where WTOW mixes with subpolar mode waters. Our results suggest that internal tides, substrate heterogeneity and oceanographic interfaces may enhance biological diversity on this and adjacent seamounts in the Rockall Trough.
Resumo:
We present two novel bioassays to be used in the examination of plant-parasitic nematode host-finding ability. The host-finding 'pipette-bulb assay' was constructed from modelled Pasteur pipette bulbs and connecting barrels using parafilm fastenings. This assay examines the direction of second-stage juvenile (J2) migration in response to a host seedling, through a moistened sand substrate, which underlies terminal upward-facing 'seedling bulbs', one containing a host seedling in potting compost, the other with only potting compost. An equal watering regime through both upward-facing seedling bulbs creates a directional concentration gradient of host diffusate chemotactic factors. Positive chemotactic stimuli cause the J2 to orientate and migrate towards the host plant. We present validation data collected from assays of the root-knot nematode, Meloidogyne incognita, and the potato cyst nematode, Globodera pallida, which indicate a highly significant positive attraction of J2 of both species to respective host plants. This represents a simple, quick and inexpensive method of assessing host-finding behaviour in the laboratory. We consider that the pipette-bulb assay improves on previous host-finding/chemo-attraction assays through creating a more biologically relevant environment for experimental J2; analysis is quick and easy, allowing the straightforward interpretation of results. In addition, we have developed an 'agar trough' sensory assay variant which we believe can be used rapidly to ratify nematode responses to chemical gustatory or olfactory cues. This was constructed from a water agar substrate such that two counting wells were connected by a raised central trough, all flooded with water. Two small water agar plugs were dehydrated briefly in an oven and then hydrated in either an attractant, repellent or water control; these plugs were then placed in the terminal counting wells and subsequently leached the attractant or repellent to form a concentration gradient along the central trough, which contained the initial J2 innoculum. Our data show that both M. incognita and G. pallida J2 are positively attracted to host diffusates. In addition, they displayed a strong repulsion in response to 1 M NaCl2. J2 of M. incognita displayed a mild aversion to a non-host oak root diffusate, whereas G. pallida J2 displayed a strong aversion to the same non-host diffusate; neither species responded to a compost leachate. We believe that the agar trough assay improves on previous methods by facilitating rapid diffusion of attractant or repellents. Both of the aforementioned assays were designed as tools to assess the impact of RNAi-based reverse genetics screens for gene targets involved in chemosensory orientation.
Resumo:
We present a comparison of two Suzaku X-ray observations of the nearby (z = 0.184), luminous (L ∼ 10 erg s) type I quasar, PDS 456. A new 125 ks Suzaku observation in 2011 caught the quasar during a period of low X-ray flux and with a hard X-ray spectrum, in contrast with a previous 190 ks Suzaku observation in 2007 when the quasar appeared brighter and had a steep (Γ > 2) X-ray spectrum. The 2011 X-ray spectrum contains a pronounced trough near 9 keV in the quasar rest frame, which can be modeled with blueshifted iron K-shell absorption, most likely from the He- and H-like transitions of iron. The absorption trough is observed at a similar rest-frame energy as in the earlier 2007 observation, which appears to confirm the existence of a persistent high-velocity wind in PDS 456, at an outflow velocity of 0.25-0.30c. The spectral variability between 2007 and 2011 can be accounted for by variations in a partial covering absorber, increasing in covering fraction from the brighter 2007 observation to the hard and faint 2011 observation. Overall, the low-flux 2011 observation can be explained if PDS 456 is observed at relatively low inclination angles through a Compton-thick wind, originating from the accretion disk, which significantly attenuates the X-ray flux from the quasar. © 2014. The American Astronomical Society. All rights reserved.
Resumo:
The rock sequence of the Tertiary Beda Formation of S. W. concession 59 and 59F block in Sirte Basin of Libya has been subdivided into twelve platformal carbonate microfacies. These microfacies are dominated by muddy carbonates, such as skeletal mudstones, wackestones, and packstones with dolomites and anhydrite. Rock textures, faunal assemblages and sedimentary structures suggest shallow, clear, warm waters and low to moderate energy conditions within the depositional shelf environment. The Beda Formation represents a shallowing-upward sequence typical of lagoonal and tidal flat environments marked at the top by sabkha and brackish-water sediments. Microfossils include benthonic foraminifera, such as miliolids, Nummulites, - oerculina and other smaller benthonics, in addition to dasycladacean algae, ostracods, molluscs, echinoderms, bryozoans and charophytes. Fecal pellets and pelloids, along with the biotic allochems, contributed greatly to the composition of the various microfacies. Dolomite, where present, is finely crystalline and an early replacement product. Anhydrite occurs as nodular, chickenwire and massive textures indicating supratidal sabkha deposition. Compaction, micr it i zat ion , dolomit izat ion , recrystallization, cementation, and dissolution resulted in alteration and obliteration of primary sedimentary structures of the Beda Formation microfacies. The study area is located in the Gerad Trough which developed as a NE-SW trending extensional graben. The Gerad trough was characterized by deep-shallow water conditions throughout the deposition of the Beda Formation sediments. The study area is marked by several horsts and grabens; as a result of extent ional tectonism. The area was tectonically active throughout the Tertiary period. Primary porosity is intergranular and intragranular, and secondary processes are characterized by dissolution, intercrystalline, fracture and fenestral features. Diagenesis, through solution leaching and dolomitization, contributed greatly to porosity development. Reservoir traps of the Beda Formation are characterized by normal fault blocks and the general reservoir characteristics/properties appear to be facies controlled.
Resumo:
[ 1] The local heat content and formation rate of the cold intermediate layer (CIL) in the Gulf of Saint Lawrence are examined using a combination of new in situ wintertime observations and a three-dimensional numerical model. The field observations consist of five moorings located throughout the gulf over the period of November 2002 to June 2003. The observations demonstrate a substantially deeper surface mixed layer in the central and northeast gulf than in regions downstream of the buoyant surface outflow from the Saint Lawrence Estuary. The mixed-layer depth in the estuary remains shallow (< 60 m) throughout winter, with the arrival of a layer of near-freezing waters between 40 and 100 m depth in April. An eddy-permitting ice-ocean model with realistic forcing is used to hindcast the period of observation. The model simulates well the seasonal evolution of mixed-layer depth and CIL heat content. Although the greatest heat losses occur in the northeast, the most significant change in CIL heat content over winter occurs in the Anticosti Trough. The observed renewal of CIL in the estuary in spring is captured by the model. The simulation highlights the role of the northwest gulf, and in particular, the separation of the Gaspe Current, in controlling the exchange of CIL between the estuary and the gulf. In order to isolate the effects of inflow through the Strait of Belle Isle on the CIL heat content, we examine a sensitivity experiment in which the strait is closed. This simulation shows that the inflow has a less important effect on the CIL than was suggested by previous studies.
Resumo:
Marine and terrestrial sediments of the Valanginian age display a distinct positive δ13C excursion, which has recently been interpreted as the expression of an oceanic anoxic episode (OAE) of global importance. Here we evaluate the extent of anaerobic conditions in marine bottom waters and explore the mechanisms involved in changing carbon storage on a global scale during this time interval. We asses redox-sensitive trace-element distributions (RSTE; uranium, vanadium, cobalt, arsenic and molybdenum) and the quality and quantity of preserved organic matter (OM) in representative sections along a shelf-basin transect in the western Tethys, in the Polish Basin and on Shatsky Rise. OM-rich layers corresponding in time to the δ13C shift are generally rare in the Tethyan sections and if present, the layers are not thicker than several centimetres and total organic carbon (TOC) contents do not surpass 1.68 wt..%. Palynological observations and geochemical properties of the preserved OM suggest a mixed marine and terrestrial origin and deposition in an oxic environment. In the Polish Basin, OM-rich layers show evidence for an important continental component. RSTE exhibit no major enrichments during the δ13C excursion in all studied Tethyan sections. RSTE enrichments are, however, observed in the pre-δ13C excursion OM-rich “Barrande” levels of the Vocontian Trough. In addition, all Tethyan sections record higher Mn contents during the δ13C shift, indicating rather well-oxygenated bottom waters in the western Tethys and the presence of anoxic basins elsewhere, such as the restricted basins of the North Atlantic and Weddell Sea. We propose that the Valanginian δ13C shift is the consequence of a combination of increased OM storage in marginal seas and on continents (as a sink of 12C-enriched organic carbon), coupled with the demise of shallow-water carbonate platforms (diminishing the storage capacity of 13C-enriched carbonate carbon). As such the Valanginian provides a more faithful natural analogue to present-day environmental change than most other Mesozoic OAEs, which are characterized by the development of ocean-wide dysaerobic to anaerobic conditions.
Resumo:
Hamburg atmospheric general circulation model ECHAM3 at T106 resolution (1.125' lat.Aon.) has considerable skill in reproducing the observed seasonal reversal of mean sea level pressure, the location of the summer heat low as well as the position of the monsoon trough over the Indian subcontinent. The present-day climate and its seasonal cycle are realistically simulated by the model over this region. The model simulates the structure, intensity, frequency, movement and lifetime of monsoon depressions remarkably well. The number of monsoon depressions/storms simulated by the model in a year ranged from 5 to 12 with an average frequency of 8.4 yr-', not significantly different from the observed climatology. The model also simulates the interannual variability in the formation of depressions over the north Bay of Bengal during the summer monsoon season. In the warmer atmosphere under doubled CO2 conditions, the number of monsoon depressions/cyclonic storms forming in Indian seas in a year ranged from 5 to 11 with an average frequency of 7.6 yr-', not significantly different from those inferred in the control run of the model. However, under doubled CO2 conditions, fewer depressions formed in the month of June. Neither the lowest central pressure nor the maximum wind speed changes appreciably in monsoon depressions identified under simulated enhanced greenhouse conditions. The analysis suggests there will be no significant changes in the number and intensity of monsoon depressions in a warmer atmosphere.
Resumo:
During the VOCALS campaign spaceborne satellite observations showed that travelling gravity wave packets, generated by geostrophic adjustment, resulted in perturbations to marine boundary layer (MBL) clouds over the south-east Pacific Ocean (SEP). Often, these perturbations were reversible in that passage of the wave resulted in the clouds becoming brighter (in the wave crest), then darker (in the wave trough) and subsequently recovering their properties after the passage of the wave. However, occasionally the wave packets triggered irreversible changes to the clouds, which transformed from closed mesoscale cellular convection to open form. In this paper we use large eddy simulation (LES) to examine the physical mechanisms that cause this transition. Specifically, we examine whether the clearing of the cloud is due to (i) the wave causing additional cloud-top entrainment of warm, dry air or (ii) whether the additional condensation of liquid water onto the existing drops and the subsequent formation of drizzle are the important mechanisms. We find that, although the wave does cause additional drizzle formation, this is not the reason for the persistent clearing of the cloud; rather it is the additional entrainment of warm, dry air into the cloud followed by a reduction in longwave cooling, although this only has a significant effect when the cloud is starting to decouple from the boundary layer. The result in this case is a change from a stratocumulus to a more patchy cloud regime. For the simulations presented here, cloud condensation nuclei (CCN) scavenging did not play an important role in the clearing of the cloud. The results have implications for understanding transitions between the different cellular regimes in marine boundary layer (MBL) clouds.
Resumo:
How tropical cyclone (TC) activity in the northwestern Pacific might change in a future climate is assessed using multidecadal Atmospheric Model Intercomparison Project (AMIP)-style and time-slice simulations with the ECMWF Integrated Forecast System (IFS) at 16-km and 125-km global resolution. Both models reproduce many aspects of the present-day TC climatology and variability well, although the 16-km IFS is far more skillful in simulating the full intensity distribution and genesis locations, including their changes in response to El Niño–Southern Oscillation. Both IFS models project a small change in TC frequency at the end of the twenty-first century related to distinct shifts in genesis locations. In the 16-km IFS, this shift is southward and is likely driven by the southeastward penetration of the monsoon trough/subtropical high circulation system and the southward shift in activity of the synoptic-scale tropical disturbances in response to the strengthening of deep convective activity over the central equatorial Pacific in a future climate. The 16-km IFS also projects about a 50% increase in the power dissipation index, mainly due to significant increases in the frequency of the more intense storms, which is comparable to the natural variability in the model. Based on composite analysis of large samples of supertyphoons, both the development rate and the peak intensities of these storms increase in a future climate, which is consistent with their tendency to develop more to the south, within an environment that is thermodynamically more favorable for faster development and higher intensities. Coherent changes in the vertical structure of supertyphoon composites show system-scale amplification of the primary and secondary circulations with signs of contraction, a deeper warm core, and an upward shift in the outflow layer and the frequency of the most intense updrafts. Considering the large differences in the projections of TC intensity change between the 16-km and 125-km IFS, this study further emphasizes the need for high-resolution modeling in assessing potential changes in TC activity.
Resumo:
Polar lows are intense meso- a -scale cyclones that develop over the oceans poleward of the main baroclinic zone. A number of previous studies have reported polar low formation over the Sea of Japan within the East Asian winter monsoon. To understand the climatology of polar lows over the Sea of Japan, a tracking al- gorithm for polar lows is applied to the recent JRA-55 reanalysis. The polar low tracking is applied to 36 cold seasons (October–March) from October 1979 to March 2015. The polar lows over the Sea of Japan reach their maximum intensity on the southeastern side of the midline between the Japanese islands and the Asian continent. Consistent with previous case studies, composite analysis demonstrates that the polar low devel- opment is associated with the enhanced northerly flow on the western side of a synoptic-scale extratropical cyclone, with the cold trough in the midtroposphere and with increased heat fluxes from the sea surface. Furthermore, the present climatological study has revealed two dominant directions of motion of the polar lows: southward and eastward. Southward-moving polar lows are steered by a strong northerly flow in the lower troposphere, which is enhanced on the western side of synoptic-scale extratropical cyclones, while the eastward-moving polar lows occur within a planetary-scale westerly flow in the midlatitudes. Thus, the di- rection of polar low motion reflects the difference in planetary- and synoptic-scale conditions.