979 resultados para template synthesis
Resumo:
A single-crystalline EuF3 nanoflower with a novel three-dimensional (3D) nanostructure has been successfully synthesized via a facile, fast, efficient, and mild ultrasonic irradiation solution route employing the reaction of Eu(NO3)(3) and KBF4 under ambient conditions without any template or surfactant. The ultrasonic irradiation plays an important role and is necessary for the synthesis of EuF3 with the complex structure. The formation mechanism of this complex nanostructure is proposed in this paper. No template or surfactant is used in this method, which avoids the subsequent complicated workup for the removal of the template or surfactant. Furthermore, a substantial reduction in the reaction time as well as the reaction temperature is observed compared with the hydrothermal process.
Resumo:
A simple, green method was developed for the synthesis of gold and silver nanoparticles by using polysaccharides as reducing/stabilizing agents. The obtained positively charged chitosan-stabilized gold nanoparticles and negatively charged heparin-stabilized silver nanoparticles were characterized with UV-vis spectroscopy and transmission electron microscopy. The results illustrated the formation of gold and silver nanoparticles inside the nanoscopic polysaccharide templates. Moreover, the morphology and size distribution of prepared gold and silver nanoparticles varied with the concentration of both the polysaccharides and the precursor metal salts.
Resumo:
Berlin green FeFe(CN)(6) microcubic crystals have been successfully prepared by a simple hydrothermal process between K-3[Fe(CN)(6)] with Na2S2O3 aqueous solution, free of any surfactant or template. The experimental results clearly show that the molar ratio of K-3[Fe(CN)(6)] to Na2S2O3 and their concentrations are the dominant processing factors in controlling the size, morphology, and composition of the resulting products.
Resumo:
Novel spherical three-dimensional (3D) dendritic gold-polypyrrole nanocomposites were successfully prepared in the presence of an amphiphilic p-toluene sulfonic acid (TSA) as dopant and surfactant via a self-assembly process which is based on the oxidation of pyrrole (Py) and the reduction of the chloroaurate ions, yielding PPy and Au(0) simultaneously. It was found that the probability of obtaining dendritic Au@PPy/TSA nanostructures depended on the concentration of TSA and the rate of addition of the oxidant (HAuCl4), It was also proposed that the supramolecular micelles formed by Py and TSA play the role of a 'soft template' to produce the dendritic Au@PPy/TSA nanocomposites.
Resumo:
A facile soft chemical approach using cetyltrimethylammoniurn bromide (CTAB) as template is successfully designed for synthesis of neodymium hydroxide nanotubes. These nanotubes have an average outer diameter around 20 nm, inner diameter around 2 nm, and length ranging from 100 to 120 nm, high BET surface area of 495.71 m(2) g(-1). We also find that neodymium hydroxide nanorods would be obtained when CTAB absented in reaction system. The Nd(OH)(3) nanorods might act as precursors that are converted into Nd2O3 nanorods through dehydration at 550 degrees C. The nanorods could exhibit upconversion emission characteristic under excitation of 591 nm at room temperature.
Resumo:
Y2O3:RE3+ (RE = Eu, Tb, Dy) porous nanotubes were first synthesized using carbon nanotubes as template. The morphology of the coated precursors and porous Y2O3:Eu3+ nanotubes was determined by scanning electron Microscopy (SEM) and transmission electron microscopy (TEM). It was found that the coating of precursors on carbon nanotubes (CNTs) is continuous and the thickness is about 15 nm, after calcinated, the Y2O3:Eu3+ nanotubes are porous with the diameter size in the range of 50-80 nm and the length in micrometer scale. X-ray diffraction (XRD) patterns confirmed that the samples are cubic phase Y2O3 and the photoluminescence studies showed that the porous rare earth ions doped nanotubes possess characteristic emission of Eu3+, Tb3+, and Dy3+. This method may also provide a novel approach to produce other inorganic porous nanotubes used in catalyst and sensors.
Resumo:
The spherical Lindquist type polyoxometalate, Mo6O192-, has been used as a noncoordinating anionic template for the construction of novel three-dimensional lanthanide-aromatic monocarboxylate dimer supramolecular networks [Ln(2)(DNBA)(4)(DMF)(8)][Mo6O19] (Ln = La 1, Ce 2, and Eu 3, DNBA = 3,5-dinitrobenzoate, DMF = dimethylformamide). The title compounds are characterized by elemental analyses, IR, and single-crystal X-ray diffractions. X-ray diffraction experiments reveal that two Ln(III) ions are bridged by four 3,5-dinitrobenzoate anions as asymmetrically bridging ligands, leading to dimeric cores, [Ln(2)(DNBA)(4)(DMF)(8)](2+); [Ln(2)(DNBA)(4)(DMF)(8)](2+) groups are joined together by pi-pi stacking interactions between the aromatic groups to form a two-dimensional grid-like network; the 2-D supramolecular layers are further extended into 3-D supramolecular networks with 1-D box-like channels by hydrogen-bonding interactions, in which hexamolybdate polyanions reside. The compounds represent the first examples of 3-D carboxylate-bridged lanthanide dimer supramolecular "host" networks formed by pi-pi stacking and hydrogen-bonding interactions encapsulating noncoordinating "guest" polyoxoanion species. The fluorescent activity of compound 3 is reported.
Resumo:
Besides the spheres, polyhedral silver nanoclusters were prepared by the polyol process with 3-aminopropyl triethoxysilane (APTES). In the process, APTES acts as not only the stabilizer but also the template.
Resumo:
Manganese-modified mesoporous MCM-41 molecular sieves were synthesized at the absence of alkaline metal ions under mild alkaline condition using cetylpyridinium bromide surfactant as a template, and characterized with X-ray diffraction, N-2 adsorption, transmission electron microscopy, electron spin resonance (ESR), and nuclear magnetic resonance (NMR) spectroscopies. The synthesized MnMCM-41 has a high pore volume of 1.30 cm(3) g(-1) with a corresponding surface area of 1510 m(2) g(-1). The ESR and Si-29 MAS NMR spectra revealed the presence of framework manganese ions in either the as-synthesized or calcined forms. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Ordered mesoporous carbons composed of arrays of nanotubes have been synthesized using ordered mesoporous silica templates via catalytic chemical vapor deposition. The ordered carbons possess bimodal pores, namely, the pores arise from the "replica" of frameworks of the template and the pores correspond to carbon nanotubes formed in the channels of the template (see Figure).
Resumo:
The alumina nanotubes were prepared by using the anionic surfactant, sodium dodecyl sulfonate (SDS), as structure-directing template for the first time with Al(NO3)(3)center dot 9H(2)O as precursor via a hydrothermal method. Structure and morphology of the nanotubes were characterized by XRD, TEM, FT-IR, TG and N-2 adsorption-desorption. The obtained nanotubes were found having outer diameters from 6 to 8 nm with length up to 200 nm. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
This thesis describes work carried out on the design of new routes to a range of bisindolylmaleimide and indolo[2,3-a]carbazole analogs, and investigation of their potential as successful anti-cancer agents. Following initial investigation of classical routes to indolo[2,3-a]pyrrolo[3,4-c]carbazole aglycons, a new strategy employing base-mediated condensation of thiourea and guanidine with a bisindolyl β-ketoester intermediate afforded novel 5,6-bisindolylpyrimidin-4(3H)-ones in moderate yields. Chemical diversity within this H-bonding scaffold was then studied by substitution with a panel of biologically relevant electrophiles, and by reductive desulfurisation. Optimisation of difficult heterogeneous literature conditions for oxidative desulfurisation of thiouracils was also accomplished, enabling a mild route to a novel 5,6-bisindolyluracil pharmacophore to be developed within this work. The oxidative cyclisation of selected acyclic bisindolyl systems to form a new planar class of indolo[2,3-a]pyrimido[5,4-c]carbazoles was also investigated. Successful conditions for this transformation, as well as the limitations currently prevailing for this approach are discussed. Synthesis of 3,4-bisindolyl-5-aminopyrazole as a potential isostere of bisindolylmaleimide agents was encountered, along with a comprehensive derivatisation study, in order to probe the chemical space for potential protein backbone H-bonding interactions. Synthesis of a related 3,4-arylindolyl-5-aminopyrazole series was also undertaken, based on identification of potent kinase inhibition within a closely related heterocyclic template. Following synthesis of approximately 50 novel compounds with a diversity of H-bonding enzyme-interacting potential within these classes, biological studies confirmed that significant topo II inhibition was present for 9 lead compounds, in previously unseen pyrazolo[1,5-a]pyrimidine, indolo[2,3-c]carbazole and branched S,N-disubstituted thiouracil derivative series. NCI-60 cancer cell line growth inhibition data for 6 representative compounds also revealed interesting selectivity differences between each compound class, while a new pyrimido[5,4-c]carbazole agent strongly inhibited cancer cell division at 10 µM, with appreciable cytotoxic activity observed across several tumour types.
Resumo:
This thesis details the design and implementation of novel chemical routes towards a series of highly propitious 7-azaindolyl derivatives of the indolocarbazole (ICZ) and bisindolylmaleimide (BIM) families, with subsequent evaluation for use as cancer chemotherapeutic agents. A robust synthetic strategy was devised to allow the introduction of a 7-azaindolyl moiety into our molecular template. This approach allowed access to a wide range of β-keto ester and β-keto nitrile intermediates. Critical analysis identified F-ring modulation as a major theme towards the advancement of ICZ and BIM derivatives in drug therapy. Thus, the employment of cyclocondensation methodology furnished a number of novel aminopyrazole, isoxazolone, pyrazolone and pyrimidinone analogues, considerably widening the scope of the prevalent maleimide functionality. Photochemical cyclisation provided for the first reported aza ICZ containing a six-membered F-ring. Another method towards achieving the aza ICZ core involved use of a Perkin-type condensation approach, with chemical elaboration of the headgroup instigated post-aromatisation. Subsequent use of a modified Lossen rearrangement allowed access to further analogues containing a six-membered F-ring. Extensive screening of the novel aza ICZ and BIM derivatives was carried out against the NCI-60 cancer cell array, with nine prospective candidates selected for continued biological evaluation. From these assays, a number of compounds were shown to inhibit cancer cell growth at concentrations of below 10 nM. Indeed, the most active aza ICZ tested is currently under assessment by the Biological Evaluation Committee of the NCI due to excellent antiproliferative activity demonstrated across the panel of cell lines, with a mean GI50 of 34 nM, a mean total growth inhibition (TGI) of 4.6 μM and a mean cytotoxicity (LC50) of 63.1 μM. Correlation to known topoisomerase I (topo I) inhibitors was revealed by COMPARE analysis, and subsequent topo I-mediated DNA cleavage assays showed inhibitory activity below 1 μM for several derivatives.
Resumo:
This thesis outlines the design and effectuation of novel chemical routes towards a nascent class of functionalised quinoline-5,8-diones and the expansion of a series of contemporary quinazolinediones towards an innovative family of pyridinoquinazolinetetrone derivatives. This fragment based approach is envisaged to lead to advancements in the three scaffolds, expanding the SAR pool of both quinolines and quinazolinediones with subsequent evaluation of chemotherapeutic potential as well as furnishing a new class of tricycle for biological investigation. Development of novel quinoline-5,8-diones is provided for by expanding on existing methodology. Using a variety of nucleophiles on a critical intermediate, a broad range of novel compounds was afforded allowing chemotherapeutic potential to be assessed, while also serving as intermediates for accomplishing novel pyridinoquinazolinetetrone congeners. In order to incorporate functionality into our quinazolinedione template, an efficient synthetic strategy was constructed which provided a robust route to effectuate a highly derivatised pyrimidinedione ring. As derivatisation of this template is unreported our chief priority was to synthesise a range of diverse quinazolinediones. The application of annulation methodology using functionalised precursors provided a library of N-3 derivatised quinazolinedione analogues. These, along with their N-1 functionalised derivatives provide a wide scope from which to construct a series of pyridinoquinazolinetetrone derivatives while also serving as a unique class of molecules whose biological potential is uncharted. Although the actualisation of the pyridinoquinazolinetetrone was ultimately unsuccessful, our work has led to the development of novel quinoline-5,8-diones which were found to possess excellent anti-cancer activity when assessed by the NCI screen. Of the quinazolinediones synthesised eight compounds were accepted for screening by the NCI. Results from the single-dose tests however indicated that these compounds possessed little cytotoxic activity at 10 μM. The development of this novel template in conjunction with the highly active quinolinediones serves as an excellent rostrum for future synthetic endeavours.
Resumo:
We propose a reference model of the kinetics of a viral RNA-dependent RNA polymerase (vRdRp) activities and its regulation during infection of eucaryotic cells. After measles virus infects a cell, mRNAs from all genes immediately start to accumulate linearly over the first 5 to 6 h and then exponentially until approximately 24 h. The change from a linear to an exponential accumulation correlates with de novo synthesis of vRdRp from the incoming template. Expression of the virus nucleoprotein (N) prior to infection shifts the balance in favor of replication. Conversely, inhibition of protein synthesis by cycloheximide favors the latter. The in vivo elongation speed of the viral polymerase is approximately 3 nucleotides/s. A similar profile with fivefold-slower kinetics can be obtained using a recombinant virus expressing a structurally altered polymerase. Finally, virions contain only encapsidated genomic, antigenomic, and 5'-end abortive replication fragment RNAs.