981 resultados para temperature control


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In such territories where food production is mostly scattered in several small / medium size or even domestic farms, a lot of heterogeneous residues are produced yearly, since farmers usually carry out different activities in their properties. The amount and composition of farm residues, therefore, widely change during year, according to the single production process periodically achieved. Coupling high efficiency micro-cogeneration energy units with easy handling biomass conversion equipments, suitable to treat different materials, would provide many important advantages to the farmers and to the community as well, so that the increase in feedstock flexibility of gasification units is nowadays seen as a further paramount step towards their wide spreading in rural areas and as a real necessity for their utilization at small scale. Two main research topics were thought to be of main concern at this purpose, and they were therefore discussed in this work: the investigation of fuels properties impact on gasification process development and the technical feasibility of small scale gasification units integration with cogeneration systems. According to these two main aspects, the present work was thus divided in two main parts. The first one is focused on the biomass gasification process, that was investigated in its theoretical aspects and then analytically modelled in order to simulate thermo-chemical conversion of different biomass fuels, such as wood (park waste wood and softwood), wheat straw, sewage sludge and refuse derived fuels. The main idea is to correlate the results of reactor design procedures with the physical properties of biomasses and the corresponding working conditions of gasifiers (temperature profile, above all), in order to point out the main differences which prevent the use of the same conversion unit for different materials. At this scope, a gasification kinetic free model was initially developed in Excel sheets, considering different values of air to biomass ratio and the downdraft gasification technology as particular examined application. The differences in syngas production and working conditions (process temperatures, above all) among the considered fuels were tried to be connected to some biomass properties, such elementary composition, ash and water contents. The novelty of this analytical approach was the use of kinetic constants ratio in order to determine oxygen distribution among the different oxidation reactions (regarding volatile matter only) while equilibrium of water gas shift reaction was considered in gasification zone, by which the energy and mass balances involved in the process algorithm were linked together, as well. Moreover, the main advantage of this analytical tool is the easiness by which the input data corresponding to the particular biomass materials can be inserted into the model, so that a rapid evaluation on their own thermo-chemical conversion properties is possible to be obtained, mainly based on their chemical composition A good conformity of the model results with the other literature and experimental data was detected for almost all the considered materials (except for refuse derived fuels, because of their unfitting chemical composition with the model assumptions). Successively, a dimensioning procedure for open core downdraft gasifiers was set up, by the analysis on the fundamental thermo-physical and thermo-chemical mechanisms which are supposed to regulate the main solid conversion steps involved in the gasification process. Gasification units were schematically subdivided in four reaction zones, respectively corresponding to biomass heating, solids drying, pyrolysis and char gasification processes, and the time required for the full development of each of these steps was correlated to the kinetics rates (for pyrolysis and char gasification processes only) and to the heat and mass transfer phenomena from gas to solid phase. On the basis of this analysis and according to the kinetic free model results and biomass physical properties (particles size, above all) it was achieved that for all the considered materials char gasification step is kinetically limited and therefore temperature is the main working parameter controlling this step. Solids drying is mainly regulated by heat transfer from bulk gas to the inner layers of particles and the corresponding time especially depends on particle size. Biomass heating is almost totally achieved by the radiative heat transfer from the hot walls of reactor to the bed of material. For pyrolysis, instead, working temperature, particles size and the same nature of biomass (through its own pyrolysis heat) have all comparable weights on the process development, so that the corresponding time can be differently depending on one of these factors according to the particular fuel is gasified and the particular conditions are established inside the gasifier. The same analysis also led to the estimation of reaction zone volumes for each biomass fuel, so as a comparison among the dimensions of the differently fed gasification units was finally accomplished. Each biomass material showed a different volumes distribution, so that any dimensioned gasification unit does not seem to be suitable for more than one biomass species. Nevertheless, since reactors diameters were found out quite similar for all the examined materials, it could be envisaged to design a single units for all of them by adopting the largest diameter and by combining together the maximum heights of each reaction zone, as they were calculated for the different biomasses. A total height of gasifier as around 2400mm would be obtained in this case. Besides, by arranging air injecting nozzles at different levels along the reactor, gasification zone could be properly set up according to the particular material is in turn gasified. Finally, since gasification and pyrolysis times were found to considerably change according to even short temperature variations, it could be also envisaged to regulate air feeding rate for each gasified material (which process temperatures depend on), so as the available reactor volumes would be suitable for the complete development of solid conversion in each case, without even changing fluid dynamics behaviour of the unit as well as air/biomass ratio in noticeable measure. The second part of this work dealt with the gas cleaning systems to be adopted downstream the gasifiers in order to run high efficiency CHP units (i.e. internal engines and micro-turbines). Especially in the case multi–fuel gasifiers are assumed to be used, weightier gas cleaning lines need to be envisaged in order to reach the standard gas quality degree required to fuel cogeneration units. Indeed, as the more heterogeneous feed to the gasification unit, several contaminant species can simultaneously be present in the exit gas stream and, as a consequence, suitable gas cleaning systems have to be designed. In this work, an overall study on gas cleaning lines assessment is carried out. Differently from the other research efforts carried out in the same field, the main scope is to define general arrangements for gas cleaning lines suitable to remove several contaminants from the gas stream, independently on the feedstock material and the energy plant size The gas contaminant species taken into account in this analysis were: particulate, tars, sulphur (in H2S form), alkali metals, nitrogen (in NH3 form) and acid gases (in HCl form). For each of these species, alternative cleaning devices were designed according to three different plant sizes, respectively corresponding with 8Nm3/h, 125Nm3/h and 350Nm3/h gas flows. Their performances were examined on the basis of their optimal working conditions (efficiency, temperature and pressure drops, above all) and their own consumption of energy and materials. Successively, the designed units were combined together in different overall gas cleaning line arrangements, paths, by following some technical constraints which were mainly determined from the same performance analysis on the cleaning units and from the presumable synergic effects by contaminants on the right working of some of them (filters clogging, catalysts deactivation, etc.). One of the main issues to be stated in paths design accomplishment was the tars removal from the gas stream, preventing filters plugging and/or line pipes clogging At this scope, a catalytic tars cracking unit was envisaged as the only solution to be adopted, and, therefore, a catalytic material which is able to work at relatively low temperatures was chosen. Nevertheless, a rapid drop in tars cracking efficiency was also estimated for this same material, so that an high frequency of catalysts regeneration and a consequent relevant air consumption for this operation were calculated in all of the cases. Other difficulties had to be overcome in the abatement of alkali metals, which condense at temperatures lower than tars, but they also need to be removed in the first sections of gas cleaning line in order to avoid corrosion of materials. In this case a dry scrubber technology was envisaged, by using the same fine particles filter units and by choosing for them corrosion resistant materials, like ceramic ones. Besides these two solutions which seem to be unavoidable in gas cleaning line design, high temperature gas cleaning lines were not possible to be achieved for the two larger plant sizes, as well. Indeed, as the use of temperature control devices was precluded in the adopted design procedure, ammonia partial oxidation units (as the only considered methods for the abatement of ammonia at high temperature) were not suitable for the large scale units, because of the high increase of reactors temperature by the exothermic reactions involved in the process. In spite of these limitations, yet, overall arrangements for each considered plant size were finally designed, so that the possibility to clean the gas up to the required standard degree was technically demonstrated, even in the case several contaminants are simultaneously present in the gas stream. Moreover, all the possible paths defined for the different plant sizes were compared each others on the basis of some defined operational parameters, among which total pressure drops, total energy losses, number of units and secondary materials consumption. On the basis of this analysis, dry gas cleaning methods proved preferable to the ones including water scrubber technology in al of the cases, especially because of the high water consumption provided by water scrubber units in ammonia adsorption process. This result is yet connected to the possibility to use activated carbon units for ammonia removal and Nahcolite adsorber for chloride acid. The very high efficiency of this latter material is also remarkable. Finally, as an estimation of the overall energy loss pertaining the gas cleaning process, the total enthalpy losses estimated for the three plant sizes were compared with the respective gas streams energy contents, these latter obtained on the basis of low heating value of gas only. This overall study on gas cleaning systems is thus proposed as an analytical tool by which different gas cleaning line configurations can be evaluated, according to the particular practical application they are adopted for and the size of cogeneration unit they are connected to.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aims of this research study is to explore the opportunity to set up Performance Objectives (POs) parameters for specific risks in RTE products to propose for food industries and food authorities. In fact, even if microbiological criteria for Salmonella and Listeria monocytogenes Ready-to-Eat (RTE) products are included in the European Regulation, these parameters are not risk based and no microbiological criteria for Bacillus cereus in RTE products is present. For these reasons the behaviour of Salmonella enterica in RTE mixed salad, the microbiological characteristics in RTE spelt salad, and the definition of POs for Bacillus cereus and Listeria monocytogenes in RTE spelt salad has been assessed. Based on the data produced can be drawn the following conclusions: 1. A rapid growth of Salmonella enterica may occurr in mixed ingredient salads, and strict temperature control during the production chain of the product is critical. 2. Spelt salad is characterized by the presence of high number of Lactic Acid Bacteria. Listeria spp. and Enterobacteriaceae, on the contrary, did not grow during the shlef life, probably due to the relevant metabolic activity of LAB. 3. The use of spelt and cheese compliant with the suggested POs might significantly reduce the incidence of foodborne intoxications due to Bacillus cereus and Listeria monocytogenes and the proportions of recalls, causing huge economic losses for food companies commercializing RTE products. 4. The approach to calculate the POs values and reported in my work can be easily adapted to different food/risk combination as well as to any changes in the formulation of the same food products. 5. The optimized sampling plans in term of number of samples to collect can be derive in order to verify the compliance to POs values selected.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One dimensional magnetic photonic crystals (1D-MPC) are promising structures for integrated optical isolator applications. Rare earth substituted garnet thin films with proper Faraday rotation are required to fabricate planar 1D-MPCs. In this thesis, flat-top response 1D-MPC was proposed and spectral responses and Faraday rotation were modeled. Bismuth substituted iron garnet films were fabricated by RF magnetron sputtering and structures, compositions, birefringence and magnetooptical properties were studied. Double layer structures for single mode propagation were also fabricated by sputtering for the first time. Multilayer stacks with multiple defects (phase shift) composed of Ce-YIG and GGG quarter-wave plates were simulated by the transfer matrix method. The transmission and Faraday rotation characteristics were theoretically studied. It is found that flat-top response, with 100% transmission and near 45o rotation is achievable by adjusting the inter-defect spacing, for film structures as thin as 30 to 35 μm. This is better than 3-fold reduction in length compared to the best Ce-YIG films for comparable rotations, thus allows a considerable reduction in size in manufactured optical isolators. Transmission bands as wide as 7nm were predicted, which is considerable improvement over 2 defects structure. Effect of repetition number and ratio factor on transmission and Faraday rotation ripple factors for the case of 3 and 4 defects structure has been discussed. Diffraction across the structure corresponds to a longer optical path length. Thus the use of guided optics is required to minimize the insertion losses in integrated devices. This part is discussed in chapter 2 in this thesis. Bismuth substituted iron garnet thin films were prepared by RF magnetron sputtering. We investigated or measured the deposition parameters optimization, crystallinity, surface morphologies, composition, magnetic and magnetooptical properties. A very high crystalline quality garnet film with smooth surface has been heteroepitaxially grown on (111) GGG substrate for films less than 1μm. Dual layer structures with two distinct XRD peaks (within a single sputtered film) start to develop when films exceed this thickness. The development of dual layer structure was explained by compositional gradient across film thickness, rather than strain gradient proposed by other authors. Lower DC self bias or higher substrate temperature is found to help to delay the appearance of the 2nd layer. The deposited films show in-plane magnetization, which is advantageous for waveguide devices application. Propagation losses of fabricated waveguides can be decreased by annealing in an oxygen atmosphere from 25dB/cm to 10dB/cm. The Faraday rotation at λ=1.55μm were also measured for the waveguides. FR is small (10° for a 3mm long waveguide), due to the presence of linear birefringence. This part is covered in chapter 4. We also investigated the elimination of linear birefringence by thickness tuning method for our sputtered films. We examined the compressively and tensilely strained films and analyze the photoelastic response of the sputter deposited garnet films. It has been found that the net birefringence can be eliminated under planar compressive strain conditions by sputtering. Bi-layer GGG on garnet thin film yields a reduced birefringence. Temperature control during the sputter deposition of GGG cover layer is critical and strongly influences the magnetization and birefringence level in the waveguide. High temperature deposition lowers the magnetization and increases the linear birefringence in the garnet films. Double layer single mode structures fabricated by sputtering were also studied. The double layer, which shows an in-plane magnetization, has an increased RMS roughness upon upper layer deposition. The single mode characteristic was confirmed by prism coupler measurement. This part is discussed in chapter 5.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The microzooplankton grazing dilution experiments were conducted at stations 126, 127, 131 and 133-137, following Landry & Hassett (1982). Seawater samples (whole seawater - WSW) were taken via Niskin bottles mounted on to a CTD Rosette out of the chlorophyll maximum at each station. Four different dilution levels were prepared with WSW and GF/F filtered seawater - 100% WSW, 75% WSW, 50% WSW and 25% WSW. The diluted WSW was filled in 2.4 L polycarbonate bottles (two replicates for every dilution level). Three subsamples (250 - 500 mL depending on in situ chlorophyll) of the 100% WSW were filtered on to GF/F filters (25 mm diameter) and chlorophyll was extracted in 5 mL 96% ethanol for 12-24 hours. Afterwards it was measured fluorometrically before and after the addition of HCl with a Turner fluorometer according to Jespersen and Christoffersen (1987) on board of the ship. In addition, one 250 mL subsample of the 100% WSW was fixed in 2% Lugol (final concentration), to determine the microzooplankton community when back at the Institute for Hydrobiology and Fisheries Science in Hamburg. Also, one 50 mL subsample of the 100% WSW was fixed in 1 mL glutaraldehyde, to quantify bacteria abundance. The 2.4 L bottles were put in black mesh-bags, which reduced incoming radiation to approximately 50% (to minimize chlorophyll bleaching). The bottles were incubated for 24 hours in a tank on deck with flow-through water, to maintain in situ temperature. An additional experiment was carried out to test the effect of temperature on microzooplankton grazing in darkness. Therefore, 100% WSW was incubated in the deck tank and in two temperature control rooms of 5 and 15°C in darkness (two bottles each). The same was done with bottles where copepods were added (five copepods of Calanus finmarchicus in each bottle; males and females were randomly picked and divided onto the bottles). In addition, two 100% WSW bottles with five copepods each were incubated at in situ temperature at 100% light level (without mesh-bags). All experiments were incubated for 24 hours and afterwards two subsamples of each bottle were filtered on to GF/F filters (25 mm diameter); 500 - 1000 mL depending on in situ chlorophyll. One 250 mL subsample of one of the two replicates of each dilution level and each additional experiment (temperature and temperature/copepods) was fixed in 5 mL lugol for microzooplankton determination. One 50 mL subsample of one of the two 100% WSW bottles as well as of one of the additional experiments without copepods was fixed in 1 mL glutaraldehyde for bacteria determination later on. Copepods were fixed in 4% formaldehyde for length measurements and sex determination.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Red-brown dolomitic claystones overlay the Marsili Basin basaltic basement at ODP Site 650. Sequential leaching experiments reveal that most of the elements considered to have a hydrothermal or hydrogenous origin in a marine environment, such as Fe, Cu, Zn, Pb, Co, Ni, are present mainly in the aluminosilicate fraction of the dolomitic claystones. Their vertical distribution, content and partitioning chemistry of trace elements, and REE patterns suggest enhanced terrigenous input during dolomite formation, but no significant hydrothermal influence from the underlying basaltic basement. Positive correlations in the C and O isotopes in the dolomites reflect complex conditions during the dolomitization. The stable isotopes can be controlled in part by temperature variations during the dolomitization. Majority of the samples, however, form a trend that is steeper than expected for only temperature control on the C and O isotopes. The latter indicates possible isotopic heterogeneity in the proto-carbonate that can be related to arid climatic conditions during the formation of the basal dolomitic claystones. In addition, the dolostones stable isotopic characteristics can be influenced by diagenetic release of heavier delta18O from clay dehydration and/or alteration of siliciclastic material. Strontium and Pb isotopic data reveal that the non-carbonate fraction, the "dye" of the dolomitic claystones, is controlled by Saharan dust (75%-80%) and by material with isotopic characteristics similar to the Aeolian Arc volcanoes (20%-25%). The non-carbonate fraction of the calcareous ooze overlying the dolomitic claystones has a Sr and Pb isotopic composition identical to that of the dolomitic claystones, indicating that no change in the input sources to the sedimentary basin occurred during and after the dolomitization event. Combination of climato-tectonic factors most probably resulted in suitable conditions for dolomitization in the Marsili and the nearby Vavilov Basins. The basal dolomitic claystone sequence was formed at the initiation of the opening of the Marsili Basin (~2 Ma), which coincided with the consecutive glacial stage. The glaciation caused arid climate and enhanced evaporation that possibly contributed to the stable isotope variations in the proto-carbonate. The conductive cooling of the young lithosphere produced high heat flow in the region, causing low-temperature passive convection of pore waters in the basal calcareous sediment. We suggest that this pumping process was the major dolomitization mechanism since it is capable of driving large volumes of seawater (the source of Mg2+) through the sediment. The red-brown hue of the dolomitic claystones is terrigenous contribution of the glacially induced high eolian influx and was not hydrothermally derived from the underlying basaltic basement. The detailed geochemical investigation of the basal dolomitic sequence indicates that the dolomitization was most probably related to complex tectono-climatic conditions set by the initial opening stages of the Marsili Basin and glaciation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of the temperature gradients in cold stores and containers is a critical issue in the food industry for the quality assurance of products during transport and for minimising losses. This work presents an analysis of the temperatures during the refrigerated transport of 4,320 kg of blueberries in a reefer (set point temperature at ?1ºC) on a container ship from Montevideo (Uruguay) to Verona (Italy). The monitoring was performed by using semi-passive RFID loggers (TurboTag cards). The objective was to carry out a multi-distributed supervision using low-cost, wireless and autonomous sensors for the characterisation of the distribution and spatial gradients of temperatures during a long distance transport. Data analysis shows spatial (phase space) and temporal sequencing diagrams and reveals a significant heterogeneity of temperature at different locations in the container, which highlights the ineffectiveness of a temperature control system based on a single sensor, as is usually done.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A reconnaissance study of alkenone stratigraphy for the past 35 m.y. in the northern South China Sea (SCS) using sediments from Sites 1147 and 1148 of Ocean Drilling Program (ODP) Leg 184 has been completed. Alkenones were not detected in sediment samples older than ~31 Ma. However, C37:2 appeared in the sedimentary record between ~8 and 31 Ma and both C37:2 and C37:3 were present between 0 and 8 Ma. These changes in alkenone occurrences may signal a response to global-scale Neogene cooling as well as to monsoon intensification and sea level changes over time as a result of Himalayan uplift and the opening of the SCS. Alternatively, they may be related to an evolutionary record of the development of temperature control on alkenone production in coccolithophores. The Uk'37 index for 0-8 Ma produces sea-surface temperatures (SST) of 19°-26°C, which are in the range of previously determined glacial-interglacial values for the northern SCS. Before the late Pleistocene (~1.2 Ma), the SST range is between 23° and 26°C with less variation. This change in variability may signify the early stage of intensified winter monsoons where cold wind and waters from the north may not yet have had a significant effect on SST or it may be the evolutionary link between the early development of unsaturated alkenones in coccolithophores and modern temperature control of alkenone production. We believe a long-term alkenone record is useful for further understanding of global-scale neogene cooling, the development of the East Asian monsoon system, and the evolutionary development of temperature control on alkenone unsaturation. Our data indicate that a high-resolution Uk'37 record for at least the last ~8 Ma is feasible for the northern SCS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cardiac remodeling (hypertrophy and fibrosis) and an increased left ventricular diastolic stiffness characterize models of hypertension such as the SHR and DOCA-salt hypertensive rats. By contrast, hyperthyroidism induces hypertrophy and hypertension, yet collagen expression and deposition is unchanged or decreased, whereas diastolic stiffness is increased. We determined the possible role of increased calcium influx in the development of increased diastolic stiffness in hyperthyroidism by administering verapamil (15 mg/[kg(.)d] orally) to rats given triiodothyronine (T-3) (0.5 mg/[kg.d] subcutaneously for 14 d). Administration of T3 significantly increased body temperature (control: 36.7 +/- 0.2 degrees C; T-3: 39.6 +/- 0.2 degrees C), left ventricular wet weight (control: 2.09 +/- 0.02 mg/kg; T-3 3.07 +/- 0.07 mg/kg), systolic blood pressure (control: 128 +/- 5 mmHg; T-3: 156 +/- 4 mmHg), and left ventricular diastolic stiffness (control: 20.6 +/- 2.0; T-3: 28.8 +/- 1.4). Collagen content of the left ventricle was unchanged. Contractile response to noradrenaline in thoracic aortic rings was reduced. Relaxation in response to acetylcholine (ACh) was also reduced in T-3-treated rats, whereas sodium nitroprusside response was unchanged. Verapamil treatment of hyperthyroid rats completely prevented the increased diastolic stiffness and systolic blood pressure while attenuating the increased body temperature and left ventricular weight; collagen content remained unchanged. ACh response in thoracic aortic rings was restored by verapamil. Thus, in hyperthyroid rats, an increased calcium influx is a potential mediator of the increased diastolic stiffness independent of changes in collagen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Food safety is critical to the success of restaurants. Yet current methods of controling foodborne illness are inadequate, including time and temperature control, safe food handling procedures, good employee hygiene, cleaning and sanitizing techniques, and Hazard Analysis and Critical Control Points (HACCP) plan. Several barriers to food safety in restaurants are identified and recommendations for management are suggested.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study evaluated the effects of incorporating an additive from an agro-industrial residue, after some chemical modification reactions, to petroleum asphalt cement (CAP) through the polymerization reaction of a viscous polyol obtained by bagasse biomass oxypropylation reaction sugarcane with anhydrides. The polyol is obtained by biomass oxypropylation reaction with propylene oxide, the reaction was performed in an autoclave sealed with pressure and temperature control using 25 mL of OP for every 5 grams of biomass 200°C, which time reaction was two hours. The reaction is revealed by varying the system pressure, initially at atmospheric pressure to reach a maximum pressure value and its subsequent return to atmospheric pressure. For the choice of the most suitable reaction time for polymerization of the polyol with pyromellitic anhydride, the reaction was also conducted in an autoclave sealed with temperature controller (150 ° C) using 20 g of polyol, 1 g of sodium acetate (catalyst) and 8 g of pyromellitic anhydride with the times 30 and 60 minutes. The polymerized materials with different times were characterized by determining the relative viscosity and percentage content of extractable in cyclohexane / ethanol. Given the results with the polymerized material 30 minutes showed the lowest percentage content of extractives and an increased viscosity relative indicating that this time is highlighted with respect to time 60 minutes, because the material is possibly in the form of a crosslinked polymer. Given the choice of time of 30 minutes other polymerization reactions were performed with various anhydrides and other conditions employed different proportions by mass of polyol anhydrides we were referred to as condition I (20 g anhydride and 8 g of polyol), II (20 g anhydride and 20 g of polyol) and III (8 g anhydride and 20 g of polyol). The FTIR spectra of polymeric materials with different polymerization conditions used to prove the occurrence of chemical modification due to the appearance of a characteristic band ester groups (1750 cm-1) present in the polymerized material. He chose to work with the condition III, as is the condition which employs a larger amount of polyol, and even with the smaller amount of anhydride used FTIR spectra revealed that the polymerization reaction was performed. Among the various anhydrides (phthalic, maleic and pyromellitic) of the different conditions used that stood out before the solubility test with solvents analyzed was polymerized material with pyromellitic anhydride because the polymerized material likely in the form of a crosslinked polymer because it was insoluble or poorly soluble in the solvents tested. Polymerization of the polyol with pyromellitic anhydride using condition III, that is, BCPP30, CSPP30, PCPP30 e BCPPG30, provided an increase in thermal stability relative to material in the form of polyol. Applicability tests concerning the incorporation of 16% m / m BCPP30, CSPP30, PCPP30 e BCPPG30 additive in relation to the mass of 600 g CAP showed through characterization tests used, softening point, elastic recovery and marshall dosage, it is possible to use BCPP30 as an additive the conventional CAP, because even with the incorporation of this new additive modified CAP met the specifications of the appropriate standard.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An account is given of the Central Laser Facility's work to produce a cryogenic hydrogen targetry system using a pulse tube cryocooler. Due to the increasing demand for low Z thin laser targets, CLF (in collaboration with TUD) have been developing a system which allows the production of solid hydrogen membranes by engineering a design which can achieve this remotely; enabling the gas injection, condensation and solidification of hydrogen without compromising the vacuum of the target chamber. A dynamic sealing mechanism was integrated which allows targets to be grown and then remotely exposed to open vacuum for laser interaction. Further research was conducted on the survivability of the cryogenic targets which concluded that a warm gas effect causes temperature spiking when exposing the solidified hydrogen to the outer vacuum. This effect was shown to be mitigated by improving the pumping capacity of the environment and reducing the minimum temperature obtainable on the target mount. This was achieved by developing a two-stage radiation shield encased with superinsulating blanketing; reducing the base temperature from 14 0.5 K to 7.2 0.2 K about the coldhead as well as improving temperature control stability following the installation of a high-performance temperature controller and sensor apparatus. The system was delivered experimentally and in July 2014 the first laser shots were taken upon hydrogen targets in the Vulcan TAP facility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leafy greens are essential part of a healthy diet. Because of their health benefits, production and consumption of leafy greens has increased considerably in the U.S. in the last few decades. However, leafy greens are also associated with a large number of foodborne disease outbreaks in the last few years. The overall goal of this dissertation was to use the current knowledge of predictive models and available data to understand the growth, survival, and death of enteric pathogens in leafy greens at pre- and post-harvest levels. Temperature plays a major role in the growth and death of bacteria in foods. A growth-death model was developed for Salmonella and Listeria monocytogenes in leafy greens for varying temperature conditions typically encountered during supply chain. The developed growth-death models were validated using experimental dynamic time-temperature profiles available in the literature. Furthermore, these growth-death models for Salmonella and Listeria monocytogenes and a similar model for E. coli O157:H7 were used to predict the growth of these pathogens in leafy greens during transportation without temperature control. Refrigeration of leafy greens meets the purposes of increasing their shelf-life and mitigating the bacterial growth, but at the same time, storage of foods at lower temperature increases the storage cost. Nonlinear programming was used to optimize the storage temperature of leafy greens during supply chain while minimizing the storage cost and maintaining the desired levels of sensory quality and microbial safety. Most of the outbreaks associated with consumption of leafy greens contaminated with E. coli O157:H7 have occurred during July-November in the U.S. A dynamic system model consisting of subsystems and inputs (soil, irrigation, cattle, wildlife, and rainfall) simulating a farm in a major leafy greens producing area in California was developed. The model was simulated incorporating the events of planting, irrigation, harvesting, ground preparation for the new crop, contamination of soil and plants, and survival of E. coli O157:H7. The predictions of this system model are in agreement with the seasonality of outbreaks. This dissertation utilized the growth, survival, and death models of enteric pathogens in leafy greens during production and supply chain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O desenvolvimento de métodos adequados que permitam o monitoramento de resíduos e contaminantes em alimentos é de suma importância pois é a única forma de garantir a segurança dos alimentos evitando danos à saúde do consumidor. Para isso, fazse necessário que estes métodos sejam rápidos, fáceis e de baixo custo, capazes de detectar a presença de resíduos em concentrações baixas e em diferentes matrizes. Este trabalho consistiu no desenvolvimento de método para determinação de 5 sedativos e 14 β-bloqueadores em amostras de rim suíno e posterior análise por Cromatografia Líquida Acoplada à Espectrometria de Massas em Série (LC-MS/MS). O procedimento de extração que melhor se adequou para análise destes compostos consistiu na pesagem de 2 g de amostra e adição de 10 mL de acetonitrila seguida de homogeneização com auxílio de Ultra-Turrax e mesa agitadora. Após extração, as amostras foram submetidas a duas técnicas de clean-up, sendo elas, congelamento do extrato à baixa temperatura e extração em fase sólida dispersiva (d-SPE) utilizando como sorvente Celite® 545. Uma etapa de concentração foi realizada com auxílio de concentrador de amostras sob fluxo de N2 e temperatura controlada. As amostras secas foram retomadas com metanol e analisadas utilizando sistema LC-MS/MS com Ionização por Eletrospray (ESI), operando no modo MRM positivo, coluna Poroshell 120 EC-C18 (3,0 x 50 mm, 2,7 μm) para separação dos analitos, e gradiente de fase móvel composta por (A) solução aquosa acidificada com 0,1% de ácido fórmico (v/v) e (B) metanol 0,1% ácido fórmico (v/v). Os parâmetros de validação avaliados foram linearidade, seletividade, efeito matriz, precisão, veracidade, recuperação, limite de decisão, capacidade de detecção, incerteza da medição, robustez, limite de detecção e de quantificação. Além disso foram observados os critérios de desempenho aplicáveis à detecção por espectrometria de massas e estabilidade dos compostos. A recuperação foi avaliada em 10 μg kg-1 e a veracidade em 5, 10 e 15 μg kg-1 apresentando resultados satisfatórios entre 70 - 85% e 90 - 101%, respectivamente. O limite de quantificação determinado foi de 2,5 μg kg-1 , exceto para carazolol que foi de 1,25 μg kg- 1 . O estudo de linearidade foi realizado entre 0 e 20 μg kg-1 apresentando coeficientes de determinação superiores a 0,98. Estes procedimentos foram realizados através de análise de matriz branca fortificada. Além disso, o presente método foi utilizado para analisar carazolol, azaperone e azaperol em amostras de ensaio colaborativo de rim suíno, apresentando resultados muito próximos aos reais. Portanto, é possível concluir que o método desenvolvido é adequado para análise de sedativos e β-bloqueadores através de extração dos compostos e limpeza do extrato eficientes utilizando procedimentos rápidos, fáceis e de baixo custo, garantindo resultados seguros e confiáveis.