956 resultados para synthesis of 1-indanones


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sucrose (Suc):Suc 1-fructosyltransferase (1-SST) is the key enzyme in plant fructan biosynthesis, since it catalyzes de novo fructan synthesis from Suc. We have cloned 1-SST from onion (Allium cepa) by screening a cDNA library using acid invertase from tulip (Tulipa gesneriana) as a probe. Expression assays in tobacco (Nicotiana plumbaginifolia) protoplasts showed the formation of 1-kestose from Suc. In addition, an onion acid invertase clone was isolated from the same cDNA library. Protein extracts of tobacco protoplasts transformed with this clone showed extensive Suc-hydrolyzing activity. Conditions that induced fructan accumulation in onion leaves also induced 1-SST mRNA accumulation, whereas the acid invertase mRNA level decreased. Structurally different fructan molecules could be produced from Suc by a combined incubation of protein extract of protoplasts transformed with 1-SST and protein extract of protoplasts transformed with either the onion fructan:fructan 6G-fructosyltransferase or the barley Suc:fructan 6-fructosyltransferase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The N,N'-diacetyllactosediamine (lacdiNAc) pathway of complex-type oligosaccharide synthesis is controlled by a UDP-GalNAc:GlcNAc beta-R beta 1-->4-N-acetylgalac-tesaminyltransferase (beta 4-GalNAcT) that acts analogously to the common UDP-Gal:GlcNAc beta-R beta 1-->4-galactosyltransferase (beta 4-GalT). LacdiNAc-based chains particularly occur in invertebrates and cognate beta 4-GalNAcTs have been identified in the snail Lymnaea stagnalis, in two schistosomal species, and in several lepldopteran insect cell lines. Because of the similarity in reactions catalyzed by both enzymes, we investigated whether L. stagnalis albumen gland beta 4-GalNAcT would share with mammalian beta 4-GalT the property of interacting with alpha-lactalbumin (alpha-LA), a protein that only occurs in the lactating mammary gland, to form a complex in which the specificity of the enzyme is changed. It was found that, under conditions where beta 4-GalT forms the lactose synthase complex with alpha-LA, the snail beta 4-GalNAcT was induced by this protein to act on Glc with a > 100-fold increased efficiency, resulting in the formation of the lactose analog GalNAc beta 1-->4Glc. This forms the second example of a glycosyltransferase, the specificity of which can be altered by a modifier protein. So far, however, no protein fraction could be isolated from L. stagnalis that could likewise interact with the beta 4-GalNAcT. Neither had lysozyme c, a protein that is homologous to alpha-LA, an effect on the specificity of the enzyme. These results raise the question of how the capability to interact with alpha-LA has been conserved in the snail enzyme during evolution without any apparent selective pressure. They also suggest that snail beta 4-GalNAcT and mammalian beta 4-GalT show similarity at a molecular level and allows the identification of the beta 4-GalNAcT as a candidate member of the beta 4-GalT family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of unnatural pyrrolizidines has been studied using a multicomponent-domino process involving proline or 4-hydroxyproline esters, an aldehyde and a dipolarophile. The formation of the iminium salt promotes the 1,3-dipolar cycloaddition affording highly substituted pyrrolizidines under mild conditions and high regio- and diastereoselectivities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A wide variety of chiral succinimides have been prepared in high yields and enantioselectivities by asymmetric conjugate addition of 1,3-dicarbonyl compounds to maleimides under very mild reaction conditions using a bifunctional benzimidazole-derived organocatalyst. Computational and NMR studies support the hydrogen-bonding activation role of the catalyst and the origin of the stereoselectivity of the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chiral complexes formed by privileged phosphoramidites and silver triflate or silver benzoate are excellent catalysts for the general 1,3-dipolar cycloaddition between azomethine ylides generated from α-amino acid-derived imino esters and nitroalkenes affording with high dr the exo-cycloadducts 4,5-trans-2,5-cis-4-nitroprolinates in high ee at room temperature. In general, better results are obtained using silver rather than copper(II) complexes. In many cases the exo-cycloadducts can be obtained in enantiomerically pure form just after simple recrystallization. The mechanism and the justification of the experimentally observed stereodiscrimination of the process are supported by DFT calculations. These enantiomerically enriched exo-nitroprolinates can be used as reagents for the synthesis of nitropiperidines, by ester reduction and ring expansion, which are inhibitors of farnesyltransferase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Azomethine ylides, generated from imine-derived O-cinnamyl or O-crotonyl salicylaldeyde and α-amino acids, undergo intramolecular 1,3-dipolar cycloaddition, leading to chromene[4,3-b]pyrrolidines. Two reaction conditions are used: (a) microwave-assisted heating (200 W, 185 °C) of a neat mixture of reagents, and (b) conventional heating (170 °C) in PEG-400 as solvent. In both cases, a mixture of two epimers at the α-position of the nitrogen atom in the pyrrolidine nucleus was formed through the less energetic endo-approach (B/C ring fusion). In many cases, the formation of the stereoisomer bearing a trans-arrangement into the B/C ring fusion was observed in high proportions. Comprehensive computational and kinetic simulation studies are detailed. An analysis of the stability of transient 1,3-dipoles, followed by an assessment of the intramolecular pathways and kinetics are also reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A general synthesis of highly substituted pyrrolizidines can be performed by a multicomponent 1,3-dipolar cycloaddition using proline ester hydrochlorides, aldehydes and dipolarophiles, at room temperature without catalysts or in the presence of AgOAc (5 mol %). In the case of (2S,4R)-4-hydroxyproline derivatives it is possible to obtain enantioenriched pyrrolizidines with high control of the regio- and diastereoselectivity affording the adducts 2,4-trans-2,5-trans according to an endo-approach and a S-dipole geometry of the in situ generated azomethine ylide. For proline esters a similar regioselectivity and endo-diastereoselectivity are observed when the dipole promotes an α-attack. However, when ethyl glyoxylate is used as aldehyde component the γ-attack of the S-ylide takes place preferentially giving rise the opposite regioselectivity for acrylic dipolarophiles, being crucial the role of silver acetate. In this case, the exo-adducts with a 2,3-cis-2,5-trans relative configuration are diastereoselectively obtained. In addition, computational studies have also been carried out to shed light on the origins of the diastereo- and regioselectivity observed for the described 1,3-dipolar cycloadditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple change in the polarity of the solvent allows both enantiomers of substituted succinimides to be obtained in the enantioselective conjugate addition reaction of aldehydes, mainly α,α-disubstituted, to maleimides catalysed by chiral carbamate-monoprotected trans-cyclohexane-1,2-diamines. Using a single enantiomer of the organocatalyst, both enantiomers of the resulting Michael adducts are obtained in high yields by simply changing the reaction solvent from aqueous DMF (up to 84 % ee) to chloroform (up to 86 % ee). Theoretical calculations are used to explain this uncommon reversal of the enantioselectivity; two transition state orientations of different polarities are differently favoured in polar or nonpolar solvents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of constrained spirocycles is achieved effectively by means of 1,3-dipolar cyclodditions employing α-imino γ-lactones as azomethine ylide precursors and nitroalkenes as dipolarophiles. The complex formed by (R,R)-Me-DuPhos 18 and AgF is the most efficient bifunctional catalyst. Final spiro-nitroprolinates cycloadducts are obtained in good to moderate yields and both high diastereo- and enantioselectivities. Density functional theory (DFT) calculations supported the expected absolute configuration as well as other stereochemical parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Xanthones and 1,2,3-triazoles are known to exhibit several biological, pharmacological and biocidal properties[1]. The potential applications of these two classes of heterocycles led us to develop new strategies to synthesize xanthone-1,2,3-triazole dyads, aiming to get potentially improved therapeutic agents[2]. With this rational in mind we designed and synthesized novel chromone derivatives 1a-d to be used as building motifs and to explore the reactivity of the two unsaturated systems (the diene and the alkyne). In the present communication we will present a new synthetic route towards the synthesis of xanthone-1,2,3-triazole dyads 7a-d using consecutively the azide-alkyne Huisgen 1,3-dipolar cycloaddition and Diels-Alder reaction. Our approach involves the synthesis chromone-triazole derivatives 2a-d using the reaction of 1a-d with sodium azide, followed by the methylation of the NH of the triazole moiety. The methylation afforded three isomers 3a-d, 4a-d and 5a-d, as expected. The major isomers 3a-d were used in the Diels-Alder reaction with N-methylmaleimide, and the adducts obtained 6a-d were oxidized to afford the xanthone-1,2,3-triazole dyads 7a-d. All the synthetic details as well as the structural characterization (by 1D and 2D NMR studies) of the new synthesised compounds will be presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of multi-target drugs for treating complex multifactorial diseases constitutes an active research ield. This kind of drugs has gained much importance as alternative strategy to combination therapy (“cocktail drugs”).1 A common way to design them brings together two different pharmacophores in one single molecule (so-called dyads). Following this idea and being aware that xanthones2 and 1,2,3-triazoles3 possess important pharmacological properties, we combined these two heterocycles in one molecule to create new dyads with improved therapeutic potential. In this work, new xanthone-1,2,3-triazole dyads were prepared from novel (E)-2-(4-arylbut-1-en-3-yn-1-yl)chromones by two different approaches to evaluate their eficiency and sustainability. Both methodologies involved Diels-Alder reactions to build the xanthone core, which were optimized using microwave irradiation as alternative heating method, and 1,3-dipolar cycloadditions to insert the 1,2,3-triazole moiety (Figure 1).4 All final and intermediate compounds were fully characterized by 1D and 2D NMR techniques.