918 resultados para symbolic computation
Resumo:
In vitro studies and mathematical models are now being widely used to study the underlying mechanisms driving the expansion of cell colonies. This can improve our understanding of cancer formation and progression. Although much progress has been made in terms of developing and analysing mathematical models, far less progress has been made in terms of understanding how to estimate model parameters using experimental in vitro image-based data. To address this issue, a new approximate Bayesian computation (ABC) algorithm is proposed to estimate key parameters governing the expansion of melanoma cell (MM127) colonies, including cell diffusivity, D, cell proliferation rate, λ, and cell-to-cell adhesion, q, in two experimental scenarios, namely with and without a chemical treatment to suppress cell proliferation. Even when little prior biological knowledge about the parameters is assumed, all parameters are precisely inferred with a small posterior coefficient of variation, approximately 2–12%. The ABC analyses reveal that the posterior distributions of D and q depend on the experimental elapsed time, whereas the posterior distribution of λ does not. The posterior mean values of D and q are in the ranges 226–268 µm2h−1, 311–351 µm2h−1 and 0.23–0.39, 0.32–0.61 for the experimental periods of 0–24 h and 24–48 h, respectively. Furthermore, we found that the posterior distribution of q also depends on the initial cell density, whereas the posterior distributions of D and λ do not. The ABC approach also enables information from the two experiments to be combined, resulting in greater precision for all estimates of D and λ.
Resumo:
We demonstrate a geometrically inspired technique for computing Evans functions for the linearised operators about travelling waves. Using the examples of the F-KPP equation and a Keller–Segel model of bacterial chemotaxis, we produce an Evans function which is computable through several orders of magnitude in the spectral parameter and show how such a function can naturally be extended into the continuous spectrum. In both examples, we use this function to numerically verify the absence of eigenvalues in a large region of the right half of the spectral plane. We also include a new proof of spectral stability in the appropriate weighted space of travelling waves of speed c≥sqrt(2δ) in the F-KPP equation.
Resumo:
This paper addresses the problem of predicting the outcome of an ongoing case of a business process based on event logs. In this setting, the outcome of a case may refer for example to the achievement of a performance objective or the fulfillment of a compliance rule upon completion of the case. Given a log consisting of traces of completed cases, given a trace of an ongoing case, and given two or more possible out- comes (e.g., a positive and a negative outcome), the paper addresses the problem of determining the most likely outcome for the case in question. Previous approaches to this problem are largely based on simple symbolic sequence classification, meaning that they extract features from traces seen as sequences of event labels, and use these features to construct a classifier for runtime prediction. In doing so, these approaches ignore the data payload associated to each event. This paper approaches the problem from a different angle by treating traces as complex symbolic sequences, that is, sequences of events each carrying a data payload. In this context, the paper outlines different feature encodings of complex symbolic sequences and compares their predictive accuracy on real-life business process event logs.
Resumo:
The inverse temperature hyperparameter of the hidden Potts model governs the strength of spatial cohesion and therefore has a substantial influence over the resulting model fit. The difficulty arises from the dependence of an intractable normalising constant on the value of the inverse temperature, thus there is no closed form solution for sampling from the distribution directly. We review three computational approaches for addressing this issue, namely pseudolikelihood, path sampling, and the approximate exchange algorithm. We compare the accuracy and scalability of these methods using a simulation study.
Resumo:
This practice-led project is implemented in the context of rites of passage based on significant events in formative transitions of Self. It employs an intuitive methodology to examine and explore the 'Child archetype', mythos, symbolic imagination and self-narrative, through the manifestation of a visual symbolic language. The contexts, methods and processes enable empowerment, heightened awareness of personal and collective relationships, meaningful discovery and development of innovative ideas and forms. The implications for this project highlight the importance of intuition in creativity and innovation. Creative practice is a vehicle for personal and collective interconnectedness. I have discovered self-empowerment, meaningful learning and innovative forms of personal and collective communication as a way of enabling transition of a significant life event.
Resumo:
This paper presents the proper computational approach for the estimation of strain energy release rates by modified crack closure integral (MCCI). In particular, in the estimation of consistent nodal force vectors used in the MCCI expressions for quarter-point singular elements (wherein all the nodal force vectors participate in computation of strain energy release rates by MCCI). The numerical example of a centre crack tension specimen under uniform loading is presented to illustrate the approach.
Resumo:
A technique for computing the spectral and angular (both the zenith and azimuthal) distribution of the solar energy reaching the surface of earth and any other plane in the atmosphere has been developed. Here the computer code LOWTRAN is used for getting the atmospheric transmittances in conjunction with two approximate procedures: one based on the Eddington method and the other on van de Hulst's adding method, for solving the equation of radiative transfer to obtain the diffuse radiation in the cloud-free situation. The aerosol scattering phase functions are approximated by the Hyeney-Greenstein functions. When the equation of radiative transfer is solved using the adding method, the azimuthal and zenith angle dependence of the scattered radiation is evaluated, whereas when the Eddington technique is utilized only the total downward flux of scattered solar radiation is obtained. Results of the diffuse and beam components of solar radiation received on surface of earth compare very well with those computed by other methods such as the more exact calculations using spherical harmonics and when atmospheric conditions corresponding to that prevailing locally in a tropical location (as in India) are used as inputs the computed values agree closely with the measured values.
Resumo:
This paper addresses the following predictive business process monitoring problem: Given the execution trace of an ongoing case,and given a set of traces of historical (completed) cases, predict the most likely outcome of the ongoing case. In this context, a trace refers to a sequence of events with corresponding payloads, where a payload consists of a set of attribute-value pairs. Meanwhile, an outcome refers to a label associated to completed cases, like, for example, a label indicating that a given case completed “on time” (with respect to a given desired duration) or “late”, or a label indicating that a given case led to a customer complaint or not. The paper tackles this problem via a two-phased approach. In the first phase, prefixes of historical cases are encoded using complex symbolic sequences and clustered. In the second phase, a classifier is built for each of the clusters. To predict the outcome of an ongoing case at runtime given its (uncompleted) trace, we select the closest cluster(s) to the trace in question and apply the respective classifier(s), taking into account the Euclidean distance of the trace from the center of the clusters. We consider two families of clustering algorithms – hierarchical clustering and k-medoids – and use random forests for classification. The approach was evaluated on four real-life datasets.
Resumo:
There exists various suggestions for building a functional and a fault-tolerant large-scale quantum computer. Topological quantum computation is a more exotic suggestion, which makes use of the properties of quasiparticles manifest only in certain two-dimensional systems. These so called anyons exhibit topological degrees of freedom, which, in principle, can be used to execute quantum computation with intrinsic fault-tolerance. This feature is the main incentive to study topological quantum computation. The objective of this thesis is to provide an accessible introduction to the theory. In this thesis one has considered the theory of anyons arising in two-dimensional quantum mechanical systems, which are described by gauge theories based on so called quantum double symmetries. The quasiparticles are shown to exhibit interactions and carry quantum numbers, which are both of topological nature. Particularly, it is found that the addition of the quantum numbers is not unique, but that the fusion of the quasiparticles is described by a non-trivial fusion algebra. It is discussed how this property can be used to encode quantum information in a manner which is intrinsically protected from decoherence and how one could, in principle, perform quantum computation by braiding the quasiparticles. As an example of the presented general discussion, the particle spectrum and the fusion algebra of an anyon model based on the gauge group S_3 are explicitly derived. The fusion algebra is found to branch into multiple proper subalgebras and the simplest one of them is chosen as a model for an illustrative demonstration. The different steps of a topological quantum computation are outlined and the computational power of the model is assessed. It turns out that the chosen model is not universal for quantum computation. However, because the objective was a demonstration of the theory with explicit calculations, none of the other more complicated fusion subalgebras were considered. Studying their applicability for quantum computation could be a topic of further research.
Resumo:
A study of the essential features of piston rings in the cylinder liner of an internal combustion engine reveals that the lubrication problem posed by it is basically that of a slider bearing. According to steady-flow-hydrodynamics, viz. Image the oil film thickness becomes zero at the dead centre positions as the velocity, U = 0. In practice, however, such a phenomenon cannot be supported by consideration of the wear rates of pistion rings and cylinder liners. This can be explained by including the “squeeze” action term in the
Resumo:
We solve the Dynamic Ehrenfeucht-Fra\"iss\'e Game on linear orders for both players, yielding a normal form for quantifier-rank equivalence classes of linear orders in first-order logic, infinitary logic, and generalized-infinitary logics with linearly ordered clocks. We show that Scott Sentences can be manipulated quickly, classified into local information, and consistency can be decided effectively in the length of the Scott Sentence. We describe a finite set of linked automata moving continuously on a linear order. Running them on ordinals, we compute the ordinal truth predicate and compute truth in the constructible universe of set-theory. Among the corollaries are a study of semi-models as efficient database of both model-theoretic and formulaic information, and a new proof of the atomicity of the Boolean algebra of sentences consistent with the theory of linear order -- i.e., that the finitely axiomatized theories of linear order are dense.
Resumo:
The module of a quadrilateral is a positive real number which divides quadrilaterals into conformal equivalence classes. This is an introductory text to the module of a quadrilateral with some historical background and some numerical aspects. This work discusses the following topics: 1. Preliminaries 2. The module of a quadrilateral 3. The Schwarz-Christoffel Mapping 4. Symmetry properties of the module 5. Computational results 6. Other numerical methods Appendices include: Numerical evaluation of the elliptic integrals of the first kind. Matlab programs and scripts and possible topics for future research. Numerical results section covers additive quadrilaterals and the module of a quadrilateral under the movement of one of its vertex.
Resumo:
The transforms dealt with in this paper are defined in terms of the transform kernels which are Kroneeker products of the two or more component kernels. The signal flow-graph for the computation of such a transform is obtained with the flow-graphs for the component transforms as building blocks.