866 resultados para switched dynamic systems
Resumo:
Experimental characterization of high dimensional dynamic systems sometimes uses the proper orthogonal decomposition (POD). If there are many measurement locations and relatively fewer sensors, then steady-state behavior can still be studied by sequentially taking several sets of simultaneous measurements. The number required of such sets of measurements can be minimized if we solve a combinatorial optimization problem. We aim to bring this problem to the attention of engineering audiences, summarize some known mathematical results about this problem, and present a heuristic (suboptimal) calculation that gives reasonable, if not stellar, results.
Resumo:
The specific objective of this paper is to develop multivariable controllers that would achieve asymptotic regulation in the presence of parameter variations and disturbance inputs for a tubular reactor used in ammonia synthesis. A ninth order state space model with three control inputs and two disturbance inputs is generated from the nonlinear distributed model using linearization and lumping approximations. Using this model, an approach for control system design is developed keeping in view the imperfections of the model and the measurability of the state variables. Specifically, the design of feedforward and robust integral controllers using state and output feedback is considered. Also, the design of robust multiloop proportional integral controllers is presented. Finally the performance of these controllers is evaluated through simulation.
Resumo:
This paper gives a compact, self-contained tutorial survey of reinforcement learning, a tool that is increasingly finding application in the development of intelligent dynamic systems. Research on reinforcement learning during the past decade has led to the development of a variety of useful algorithms. This paper surveys the literature and presents the algorithms in a cohesive framework.
Resumo:
Uncertainties in complex dynamic systems play an important role in the prediction of a dynamic response in the mid- and high-frequency ranges. For distributed parameter systems, parametric uncertainties can be represented by random fields leading to stochastic partial differential equations. Over the past two decades, the spectral stochastic finite-element method has been developed to discretize the random fields and solve such problems. On the other hand, for deterministic distributed parameter linear dynamic systems, the spectral finite-element method has been developed to efficiently solve the problem in the frequency domain. In spite of the fact that both approaches use spectral decomposition (one for the random fields and the other for the dynamic displacement fields), very little overlap between them has been reported in literature. In this paper, these two spectral techniques are unified with the aim that the unified approach would outperform any of the spectral methods considered on their own. An exponential autocorrelation function for the random fields, a frequency-dependent stochastic element stiffness, and mass matrices are derived for the axial and bending vibration of rods. Closed-form exact expressions are derived by using the Karhunen-Loève expansion. Numerical examples are given to illustrate the unified spectral approach.
Resumo:
The questions that one should answer in engineering computations - deterministic, probabilistic/randomized, as well as heuristic - are (i) how good the computed results/outputs are and (ii) how much the cost in terms of amount of computation and the amount of storage utilized in getting the outputs is. The absolutely errorfree quantities as well as the completely errorless computations done in a natural process can never be captured by any means that we have at our disposal. While the computations including the input real quantities in nature/natural processes are exact, all the computations that we do using a digital computer or are carried out in an embedded form are never exact. The input data for such computations are also never exact because any measuring instrument has inherent error of a fixed order associated with it and this error, as a matter of hypothesis and not as a matter of assumption, is not less than 0.005 per cent. Here by error we imply relative error bounds. The fact that exact error is never known under any circumstances and any context implies that the term error is nothing but error-bounds. Further, in engineering computations, it is the relative error or, equivalently, the relative error-bounds (and not the absolute error) which is supremely important in providing us the information regarding the quality of the results/outputs. Another important fact is that inconsistency and/or near-consistency in nature, i.e., in problems created from nature is completely nonexistent while in our modelling of the natural problems we may introduce inconsistency or near-inconsistency due to human error or due to inherent non-removable error associated with any measuring device or due to assumptions introduced to make the problem solvable or more easily solvable in practice. Thus if we discover any inconsistency or possibly any near-inconsistency in a mathematical model, it is certainly due to any or all of the three foregoing factors. We do, however, go ahead to solve such inconsistent/near-consistent problems and do get results that could be useful in real-world situations. The talk considers several deterministic, probabilistic, and heuristic algorithms in numerical optimisation, other numerical and statistical computations, and in PAC (probably approximately correct) learning models. It highlights the quality of the results/outputs through specifying relative error-bounds along with the associated confidence level, and the cost, viz., amount of computations and that of storage through complexity. It points out the limitation in error-free computations (wherever possible, i.e., where the number of arithmetic operations is finite and is known a priori) as well as in the usage of interval arithmetic. Further, the interdependence among the error, the confidence, and the cost is discussed.
Estimating the Hausdorff-Besicovitch dimension of boundary of basin of attraction in helicopter trim
Resumo:
Helicopter trim involves solution of nonlinear force equilibrium equations. As in many nonlinear dynamic systems, helicopter trim problem can show chaotic behavior. This chaotic behavior is found in the basin of attraction of the nonlinear trim equations which have to be solved to determine the main rotor control inputs given by the pilot. This study focuses on the boundary of the basin of attraction obtained for a set of control inputs. We analyze the boundary by considering it at different magnification levels. The magnified views reveal intricate geometries. It is also found that the basin boundary exhibits the characteristic of statistical self-similarity, which is an essential property of fractal geometries. These results led the authors to investigate the fractal dimension of the basin boundary. It is found that this dimension is indeed greater than the topological dimension. From all the observations, it is evident that the boundary of the basin of attraction for helicopter trim problem is fractal in nature. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The nonlinear modelling ability of neural networks has been widely recognised as an effective tool to identify and control dynamic systems, with applications including nonlinear vehicle dynamics which this paper focuses on using multi-layer perceptron networks. Existing neural network literature does not detail some of the factors which effect neural network nonlinear modelling ability. This paper investigates into and concludes on required network size, structure and initial weights, considering results for networks of converged weights. The paper also presents an online training method and an error measure representing the network's parallel modelling ability over a range of operating conditions. Copyright © 2010 Inderscience Enterprises Ltd.
Resumo:
In real life strategic interactions, decision-makers are likely to entertain doubts about the degree of optimality of their play. To capture this feature of real choice-making, we present here a model based on the doubts felt by an agent about how well is playing a game. The doubts are coupled with (and mutually reinforced by) imperfect discrimination capacity, which we model here by means of similarity relations. We assume that each agent builds procedural preferences de ned on the space of expected payoffs-strategy frequencies attached to his current strategy. These preferences, together with an adaptive learning process lead to doubt-based selection dynamic systems. We introduce the concepts of Mixed Strategy Doubt Equilibria, Mixed Strategy Doubt-Full Equilibria and Mixed Strategy Doubtless Equilibria and show the theoretical and the empirical relevance of these concepts.
Resumo:
Background: Over many years, it has been assumed that enzymes work either in an isolated way, or organized in small catalytic groups. Several studies performed using "metabolic networks models'' are helping to understand the degree of functional complexity that characterizes enzymatic dynamic systems. In a previous work, we used "dissipative metabolic networks'' (DMNs) to show that enzymes can present a self-organized global functional structure, in which several sets of enzymes are always in an active state, whereas the rest of molecular catalytic sets exhibit dynamics of on-off changing states. We suggested that this kind of global metabolic dynamics might be a genuine and universal functional configuration of the cellular metabolic structure, common to all living cells. Later, a different group has shown experimentally that this kind of functional structure does, indeed, exist in several microorganisms. Methodology/Principal Findings: Here we have analyzed around 2.500.000 different DMNs in order to investigate the underlying mechanism of this dynamic global configuration. The numerical analyses that we have performed show that this global configuration is an emergent property inherent to the cellular metabolic dynamics. Concretely, we have found that the existence of a high number of enzymatic subsystems belonging to the DMNs is the fundamental element for the spontaneous emergence of a functional reactive structure characterized by a metabolic core formed by several sets of enzymes always in an active state. Conclusions/Significance: This self-organized dynamic structure seems to be an intrinsic characteristic of metabolism, common to all living cellular organisms. To better understand cellular functionality, it will be crucial to structurally characterize these enzymatic self-organized global structures.
Resumo:
(EuroPES 2009)