896 resultados para swarm-founding wasps
Resumo:
The sequencing of three Nasonia genomes provides new insights on the molecular signature associated with parasitoid lifestyle, allows comparison with the social honey bee, and enables the identification of genes underlying between-species and sex-specific differences.
Resumo:
Wasps and their relatives from the Lower Cretaceous lithographic limestones of Spain have been studied. Thirty specimens representing 30 species (4 of them with undetermined placement), at least 21 genera and 11 families are recorded. We erect 1 new family - Andrenelidae-, 6 new genera and 11 new species: Meiaghilarella cretacica n.gen., n.sp. (Sepulcidae Ghilarellinae), Eosyntexis catalonicus n.sp., Cretosyntexis montsecensis n.gen., n.sp. (Anaxyelidae Syntexinae), Montsecephialtites zherikhini n.gen., n.sp. (Ephialtitidae Ephialtitinae), Karataus hispanicus n.sp. (Ephialtitidae Symphytopterinae), Manlaya ansorge i n.sp. (Gasteruptiidae Baissinae), Andrenelia pennata n.gen., n.sp. (Andrenelidae n. fam.), Cretoserphus gomezi n.gen., n.sp. (Mesoserphidae), Montsecosphex jarzembow skii n.gen., n.sp., Angarosphex penyalveri n.sp., Pompilopterus (?) noguerensis n.sp. (Sphecidae Angarosphecinae), Cretoscolia conquensis n.sp. (Scoliidae Archaeoscoliinae). The Mesozoic family Ephialtitidae is revisited based on the restudy of the type-species. We compare these Spanish Cretaceous assemblages with other ones from various parts of the world: Central and Eastern Asia, England, Australia, and Brazil. The number of genera and families identified in the Spanish fossil-sites is almost the same as in the English Purbeck and Wealden. The absence of some hymenopteran groups as Xyelidae, is consistent with the warm climate know to exist in Spain during the Early Cretaceous. We conclude that both La Cabrúa and La Pedrera assemblages - the two sites that have yielded the greatest number of species- correspond to the Lower Cretaceous"Baissin type" (sensu Rasnitsyn et al., 1998), but including some Jurassic"survivors". La Pedrera assemblage fits equally well in the"angarosphecine subtype", while La Cabrúa roughly corresponds to the"proctotrupid" one, although shows a comparative ly high proportion of angarosphecins. This fact may suggest: a) possibly asynchrony between these two fossilsites, b) environmental differences not reflected in the lithological record, c) different taphonomic processes and/or, d) insufficient sample size - to reflect the reality of the source populations-. La Pedrera assemblage is very similar to those from Weald Clay (England), Bon Tsagan (Mongolia) and Santana (Brazil). La Cabrúa approaches to a some extent, though not quite agrees with the Purbeck (UK), Koonwarra (Australia), and most Lower Cretaceous Asian assemblages.
Resumo:
Some populations of Pogonomyrmex harvester ants comprise genetically differentiated pairs of interbreeding lineages. Queens mate with males of their own and of the alternate lineage and produce pure-lineage offspring which develop into queens and inter-lineage offspring which develop into workers. Here we tested whether such genetic caste determination is associated with costs in terms of the ability to optimally allocate resources to the production of queens and workers. During the stage of colony founding, when only workers are produced, queens laid a high proportion of pure-lineage eggs but the large majority of these eggs failed to develop. As a consequence, the number of offspring produced by incipient colonies decreased linearly with the proportion of pure-lineage eggs laid by queens. Moreover, queens of the lineage most commonly represented in a given mating flight produced more pure-lineage eggs, in line with the view that they mate randomly with the two types of males and indiscriminately use their sperm. Altogether these results predict frequency-dependent selection on pairs of lineages because queens of the more common lineage will produce more pure-lineage eggs and their colonies be less successful during the stage of colony founding, which may be an important force maintaining the coexistence of pairs of lineages within populations.
Resumo:
Magmas of the arc-tholeiitic and calc-alkaline differentiation suites contribute substantially to the formation of continental crust in subduction zones. Different geochemical-petrological models have been put forward to achieve evolved magmas forming large volumes of tonalitic to granitic plutons, building an important part of the continental crust. Primary magmas produced in the mantle wedge overlying the subducted slab migrate through the mantle and the crust. During the transfer, magma can accumulate in intermediate reservoirs at different levels where crystallization leads to differentiation and the heat transfer from the magma, together with gained heat from solidification, lead to partial melting of the crust. Partial melts can be assimilated and mix with more primitive magma. Moreover, already formed crystal cumulates or crystal mushes can be recycled and reactivated to transfer to higher crustal levels. Magma transport in the crust involves fow through fractures within a brittle elastic rock. The solidified magma filled crack, a dyke, can crosscut previously formed geological structures and thus serves as a relative or absolute time marker. The study area is situated in the Adamello massif. The Adamello massif is a composite of plutons that were emplaced between 42 and 29 million years. A later dyke swarm intruded into the southern part of the Adamello Batholith. A fractionation model covering dyke compositions from picrobasalts to dacites results in the cummulative crystallization of 17% olivine, 2% Cr-rich spinel, 18% clinopyroxene, 41% amphibole, 4% plagioclase and 0.1% magnetite to achieve an andesitic composition out of a hydrous primitive picrobasalt. These rocks show a similar geochemical evolution as experimental data simulating fractional crystallization and associated magma differentiation at lower crustal depth (7-10 kbar). The peraluminous, corundum normative composition is one characteristic of more evolved dacitic magmas, which has been explained in a long lasting debate with two di_erent models. Melting of mafic crust or politic material provides one model, whereas an alternative is fractionation from primary mantle derived melts. Amphibole occurring in basaltic-andesitic and andesitic dyke rocks as fractionating cumulate phase extracted from lower crustal depth (6-7.5 kbar) is driving the magmas to peraluminous, corundum normative compositions, which are represented by tonalites forming most of the Adamello Batholith. Most primitive picrobasaltic dykes have a slightly steepened chondrite normalized rare earth elements (REE) pattern and the increased enrichment of light-REE (LREE) for andesites and dacites can be explained by the fractional crystallization model originating from a picrobasalt, taking the changing fractionating phase assemblage and temperature into account. The injection of hot basaltic magma (~1050°C) in a closely spaced dyke swarm increases the surface of the contact to the mainly tonalitic wallrock. Such a setting induces partial melting of the wall rock and selective assimilation. Partial melting of the tonalite host is further expressed through intrusion breccias from basaltic dykes. Heat conduction models with instantaneous magma injection for such a dyke swarm geometry can explain features of partial melting observed in the field. Geochemical data of minerals and bulk rock further underline the selective or bulk assimilation of the tonalite host rock at upper crustal levels (~2-3 kbar), in particular with regard to light ion lithophile elements (LILE) such as Sr, Ba and Rb. Primitive picrobasalts carry an immiscible felsic assimilant as enclaves that bring along refractory rutile and zircon with textures typically found in oceanic plagiogranites or high pressure/low-temperature metamorphic rocks in general. U-Pb data implies a lower Cretaceous age for zircon not yet described as assimilant in Eocene to Oligocene magmatic rocks of the Central Southern Alps. The distribution of post-plutonic dykes in large batholiths such as the Adamello is one of the key features for understanding the regional stress field during the post-batholith emplacement cooling history. The emplacement of the regional dyke swarm covering the southern part of the Adamello massif was associated with consistent left lateral strike-slip movement along magma dilatation planes, leading to en echelon segmentation of dykes. Through the dilation by magma of pre-existing weaknesses and cracks in an otherwise uniform host rock, the dyke propagation and according orientation in the horizontal plane adjusted continuously perpendicular to least compressive remote stress σ3, resulting in an inferred rotation of the remote principal stress field. Les magmas issus des zones de subduction contribuent substantiellement à la formation de la croûte continentale. Les plutons tonalitiques et granitiques représentent, en effet, une partie importante de la croûte continentale. Des magmas primaires produits dans le 'mantle wedge ', partie du manteau se trouvant au-dessus de la plaque plongeante dans des zones de subduction, migrent à travers le manteau puis la croûte. Pendant ce transfert, le magma peut s'accumuler dans des réservoirs intermédiaires à différentes profondeurs. Le stockage de magma dans ces réservoirs engendre, d'une part, la différentiation des magmas par cristallisation fractionnée et, d'autre part, une fusion partielle la croûte continentale préexistante associée au transfert de la chaleur des magmas vers l'encaissant. Ces liquides magmatiques issus de la croûte peuvent, ensuite, se mélanger avec des magmas primaires. Le transport du magma dans la croûte implique notamment un flux de magma à travers différentes fractures recoupant les roches encaissantes élastiques. Au cours de ce processus de migration, des cumulats de cristaux ou des agrégats de cristaux encore non-solidifiés, peuvent être recyclés et réactivés pour être transportés à des niveaux supérieures de la croûte. Le terrain d'étude est situé dans le massif d'Adamello. Celui-ci est composé de plusieurs plutons mis en place entre 42 et 29 millions d'années. Dans une phase tardive de l'activité magmatique liée à ce batholite, une série de filons de composition variable allant de picrobasalte à des compositions dacitiques s'est mise en place la partie sud du massif. Deux modèles sont proposés dans la littérature, pour expliquer la formation des magmas dacitiques caractérisés par des compositions peralumineux (i.e. à corindon normatif). Le premier modèle propose que ces magmas soient issus de la fusion de matériel mafique et pélitique présent dans la partie inférieur de la croûte, alors que le deuxième modèle suggère une évolution par cristallisation fractionnée à partir de liquides primaires issus du manteau. Un modèle de cristallisation fractionnée a pu être développé pour expliquer l'évolution des filons de l'Adamello. Ce modèle explique la formation des filons dacitiques par la cristallisation fractionnée de 17% olivine, 2% spinelle riche en Cr, 18% clinopyroxène, 41% amphibole, 4% plagioclase et 0.1% magnetite à partir de liquide de compositions picrobasaltiques. Ce modèle prend en considération les contraintes pétrologiques déduites de l'observation des différents filons ainsi que du champ de stabilité des différentes phases en fonction de la température. Ces roches montrent une évolution géochimique similaire aux données expérimentales simulant la cristallisation fractionnée de magmas évoluant à des niveaux inférieurs de la croûte (7-10 kbar). Le modèle montre, en particulier, le rôle prépondérant de l'amphibole, une phase qui contrôle en particulier le caractère peralumineux des magmas différentiés ainsi que leurs compositions en éléments en traces. Des phénomènes de fusion partielle de l'encaissant tonalitique lors de la mise en place de _lons mafiques sont observée sur le terrain. L'injection du magma basaltique chaud (~1050°C) sous forme de filons rapprochés augmente la surface du contact avec l'encaissante tonalitique. Une telle situation produit la fusion partielle des roches encaissantes nécessaire à l'incorporation d'enclaves mafiques observés au sein des tonalites. Pour comprendre les conditions nécessaires pour la fusion partielle des roches encaissantes, des modèles de conduction thermique pour une injection simultanée d'une série de filons ont été développées. Des données géochimiques sur les minéraux et sur les roches totales soulignent qu'au niveau supérieur de la croûte, l'assimilation sélective ou totale de l'encaissante tonalitique modifie la composition du liquide primaire pour les éléments lithophiles tel que le Sr, Ba et Rb. Un autre aspect important concernant la pétrologie des filons de l'Adamello est la présence d'enclaves felsiques dans les filons les plus primitifs. Ces enclaves montrent, en particulier, des textures proches de celles rencontrées dans des plagiogranites océaniques ou dans des roches métamorphiques de haute pression/basse température. Ces enclaves contiennent du zircon et du rutile. La datations de ces zircons à l'aide du géochronomètre U-Pb indique un âge Crétacé inférieur. Cet âge est important, car aucune roche de cet âge n'a été considérée comme un assimilant potentiel pour des roches magmatiques d'âge Eocène à Oligocène dans les Alpes Sud Centrales. La réparation spatiale des filons post-plutoniques dans des grands batholites tel que l'Adamello, est une caractéristique clé pour la compréhension des champs de contraintes lors du refroidissement du batholite. L'orientation des filons va, en particulier, indiqué la contrainte minimal au sein des roches encaissante. La mise en place de la série de filon recoupant la partie Sud du massif de l'Adamello est associée à un décrochement senestre, un décrochement que l'on peut lié aux contraintes tectoniques régionales auxquelles s'ajoutent l'effet de la dilatation produite par la mise en place du batholite lui-même. Ce décrochement senestre produit une segmentation en échelon des filons.
Resumo:
In swarm robotics, communication among the robots is essential. Inspired by biological swarms using pheromones, we propose the use of chemical compounds to realize group foraging behavior in robot swarms. We designed a fully autonomous robot, and then created a swarm using ethanol as the trail pheromone allowing the robots to communicate with one another indirectly via pheromone trails. Our group recruitment and cooperative transport algorithms provide the robots with the required swarm behavior. We conducted both simulations and experiments with real robot swarms, and analyzed the data statistically to investigate any changes caused by pheromone communication in the performance of the swarm in solving foraging recruitment and cooperative transport tasks. The results show that the robots can communicate using pheromone trails, and that the improvement due to pheromone communication may be non-linear, depending on the size of the robot swarm.
Resumo:
The dress code of paper wasps, like that of humans, is related to their social habits: species with a flexible nest-founding strategy have highly variable black-and-yellow markings. This color polymorphism facilitates individual recognition and might have been selected to permit complex social interactions.
Resumo:
Introduction Societies of ants, bees, wasps and termites dominate many terrestrial ecosystems (Wilson 1971). Their evolutionary and ecological success is based upon the regulation of internal conflicts (e.g. Ratnieks et al. 2006), control of diseases (e.g. Schmid-Hempel 1998) and individual skills and collective intelligence in resource acquisition, nest building and defence (e.g. Camazine 2001). Individuals in social species can pass on their genes not only directly trough their own offspring, but also indirectly by favouring the reproduction of relatives. The inclusive fitness theory of Hamilton (1963; 1964) provides a powerful explanation for the evolution of reproductive altruism and cooperation in groups with related individuals. The same theory also led to the realization that insect societies are subject to internal conflicts over reproduction. Relatedness of less-than-one is not sufficient to eliminate all incentive for individual selfishness. This would indeed require a relatedness of one, as found among cells of an organism (Hardin 1968; Keller 1999). The challenge for evolutionary biology is to understand how groups can prevent or reduce the selfish exploitation of resources by group members, and how societies with low relatedness are maintained. In social insects the evolutionary shift from single- to multiple queens colonies modified the relatedness structure, the dispersal, and the mode of colony founding (e.g. (Crozier & Pamilo 1996). In ants, the most common, and presumably ancestral mode of reproduction is the emission of winged males and females, which found a new colony independently after mating and dispersal flights (Hölldobler & Wilson 1990). The alternative reproductive tactic for ant queens in multiple-queen colonies (polygyne) is to seek to be re-accepted in their natal colonies, where they may remain as additional reproductives or subsequently disperse on foot with part of the colony (budding) (Bourke & Franks 1995; Crozier & Pamilo 1996; Hölldobler & Wilson 1990). Such ant colonies can contain up to several hundred reproductive queens with an even more numerous workforce (Cherix 1980; Cherix 1983). As a consequence in polygynous ants the relatedness among nestmates is very low, and workers raise brood of queens to which they are only distantly related (Crozier & Pamilo 1996; Queller & Strassmann 1998). Therefore workers could increase their inclusive fitness by preferentially caring for their closest relatives and discriminate against less related or foreign individuals (Keller 1997; Queller & Strassmann 2002; Tarpy et al. 2004). However, the bulk of the evidence suggests that social insects do not behave nepotistically, probably because of the costs entailed by decreased colony efficiency or discrimination errors (Keller 1997). Recently, the consensus that nepotistic behaviour does not occur in insect colonies was challenged by a study in the ant Formica fusca (Hannonen & Sundström 2003b) showing that the reproductive share of queens more closely related to workers increases during brood development. However, this pattern can be explained either by nepotism with workers preferentially rearing the brood of more closely related queens or intrinsic differences in the viability of eggs laid by queens. In the first chapter, we designed an experiment to disentangle nepotism and differences in brood viability. We tested if workers prefer to rear their kin when given the choice between highly related and unrelated brood in the ant F. exsecta. We also looked for differences in egg viability among queens and simulated if such differences in egg viability may mistakenly lead to the conclusion that workers behave nepotistically. The acceptance of queens in polygnous ants raises the question whether the varying degree of relatedness affects their share in reproduction. In such colonies workers should favour nestmate queens over foreign queens. Numerous studies have investigated reproductive skew and partitioning of reproduction among queens (Bourke et al. 1997; Fournier et al. 2004; Fournier & Keller 2001; Hammond et al. 2006; Hannonen & Sundström 2003a; Heinze et al. 2001; Kümmerli & Keller 2007; Langer et al. 2004; Pamilo & Seppä 1994; Ross 1988; Ross 1993; Rüppell et al. 2002), yet almost no information is available on whether differences among queens in their relatedness to other colony members affects their share in reproduction. Such data are necessary to compare the relative reproductive success of dispersing and non-dispersing individuals. Moreover, information on whether there is a difference in reproductive success between resident and dispersing queens is also important for our understanding of the genetic structure of ant colonies and the dynamics of within group conflicts. In chapter two, we created single-queen colonies and then introduced a foreign queens originating from another colony kept under similar conditions in order to estimate the rate of queen acceptance into foreign established colonies, and to quantify the reproductive share of resident and introduced queens. An increasing number of studies have investigated the discrimination ability between ant workers (e.g. Holzer et al. 2006; Pedersen et al. 2006), but few have addressed the recognition and discrimination behaviour of workers towards reproductive individuals entering colonies (Bennett 1988; Brown et al. 2003; Evans 1996; Fortelius et al. 1993; Kikuchi et al. 2007; Rosengren & Pamilo 1986; Stuart et al. 1993; Sundström 1997; Vásquez & Silverman in press). These studies are important, because accepting new queens will generally have a large impact on colony kin structure and inclusive fitness of workers (Heinze & Keller 2000). In chapter three, we examined whether resident workers reject young foreign queens that enter into their nest. We introduced mated queens into their natal nest, a foreign-female producing nest, or a foreign male-producing nest and measured their survival. In addition, we also introduced young virgin and mated queens into their natal nest to examine whether the mating status of the queens influences their survival and acceptance by workers. On top of polgyny, some ant species have evolved an extraordinary social organization called 'unicoloniality' (Hölldobler & Wilson 1977; Pedersen et al. 2006). In unicolonial ants, intercolony borders are absent and workers and queens mix among the physically separated nests, such that nests form one large supercolony. Super-colonies can become very large, so that direct cooperative interactions are impossible between individuals of distant nests. Unicoloniality is an evolutionary paradox and a potential problem for kin selection theory because the mixing of queens and workers between nests leads to extremely low relatedness among nestmates (Bourke & Franks 1995; Crozier & Pamilo 1996; Keller 1995). A better understanding of the evolution and maintenance of unicoloniality requests detailed information on the discrimination behavior, dispersal, population structure, and the scale of competition. Cryptic genetic population structure may provide important information on the relevant scale to be considered when measuring relatedness and the role of kin selection. Theoretical studies have shown that relatedness should be measured at the level of the `economic neighborhood', which is the scale at which intraspecific competition generally takes place (Griffin & West 2002; Kelly 1994; Queller 1994; Taylor 1992). In chapter four, we conducted alarge-scale study to determine whether the unicolonial ant Formica paralugubris forms populations that are organised in discrete supercolonies or whether there is a continuous gradation in the level of aggression that may correlate with genetic isolation by distance and/or spatial distance between nests. In chapter five, we investigated the fine-scale population structure in three populations of F. paralugubris. We have developed mitochondria) markers, which together with the nuclear markers allowed us to detect cryptic genetic clusters of nests, to obtain more precise information on the genetic differentiation within populations, and to separate male and female gene flow. These new data provide important information on the scale to be considered when measuring relatedness in native unicolonial populations.
Resumo:
In social insects the number of queens per nest varies greatly. One of the proximate causes of this variation may be that queens produced by multiple-queen colonies are generally smaller, and might thus be unable to found new colonies independently. We examined whether the social origin of queens and males influenced the colony-founding success of queens in the socially polymorphic ant Formica selysi. Queens originating from single-queen and multiple-queen colonies had similar survival rates and colony-founding success, be they alone or in two-queen associations. During the first 5 months, queens originating from single-queen colonies gave rise to more workers than queens originating from multiple-queen colonies. Pairs of queens were also more productive than single queens. However, these differences in productivity were transient, as all types of colonies had reached a similar size after 15 months. Mating between social forms was possible and did not decrease queen survival or colony productivity, compared to mating within social forms. Overall, these results indicate that queens from each social form are able to found colonies independently, at least under laboratory conditions. Moreover, gene flow between social forms is not restricted by mating or genetic incompatibilities. This flexibility in mating and colony founding helps to explain the maintenance of alternative social structures in sympatry and the absence of genetic differentiation between social forms.
Resumo:
The objective of this work was to determine the potential of five species of Scelionidae wasps - Telenomus podisi, Trissolcus basalis, Trissolcus urichi, Trissolcus teretis and Trissolcus brochymenae - as natural enemies of the neotropical stink bug Dichelops melacanthus, and to determine if the presence of eggs of other stink bug species influences the parasitism and development of the parasitoids. Two kinds of experiments were done in laboratory: without choice of hosts (eggs of D. melacanthus) and with choice (eggs of D. melacanthus and of Euschistus heros). Biological parameters, including proportion of parasitism, immature survivorship, progeny sex ratio, immature stage development period, and host preference were recorded. All the evaluated parasitoids can parasitize and develop on D. melacanthus eggs. The first choice of eggs did not influence the proportion of D. melacanthus eggs parasitized by Tr. basalis, Tr. teretis or Tr. brochymenae. However, D. melacanthus eggs as the first choice of Te. podisi and Tr. urichi increased, respectively, 9 and 14 times the chance for parasitism on eggs of this species. Behavioral and ecological aspects of parasitoids should be considered prior to their use in biological control programs.
Resumo:
BACKGROUND: Understanding how alternative phenotypes arise from the same genome is a major challenge in modern biology. Eusociality in insects requires the evolution of two alternative phenotypes - workers, who sacrifice personal reproduction, and queens, who realize that reproduction. Extensive work on honeybees and ants has revealed the molecular basis of derived queen and worker phenotypes in highly eusocial lineages, but we lack equivalent deep-level analyses of wasps and of primitively eusocial species, the latter of which can reveal how phenotypic decoupling first occurs in the early stages of eusocial evolution. RESULTS: We sequenced 20 Gbp of transcriptomes derived from brains of different behavioral castes of the primitively eusocial tropical paper wasp Polistes canadensis. Surprisingly, 75% of the 2,442 genes differentially expressed between phenotypes were novel, having no significant homology with described sequences. Moreover, 90% of these novel genes were significantly upregulated in workers relative to queens. Differential expression of novel genes in the early stages of sociality may be important in facilitating the evolution of worker behavioral complexity in eusocial evolution. We also found surprisingly low correlation in the identity and direction of expression of differentially expressed genes across similar phenotypes in different social lineages, supporting the idea that social evolution in different lineages requires substantial de novo rewiring of molecular pathways. CONCLUSIONS: These genomic resources for aculeate wasps and first transcriptome-wide insights into the origin of castes bring us closer to a more general understanding of eusocial evolution and how phenotypic diversity arises from the same genome.
Resumo:
In ants, there are two main processes of colony founding, the independent and the dependent modes. In the first case young queens start colony founding without the help of workers, whereas in the second case they are accompanied by workers. To determine the relation between the mode of colony founding and the physiology of queens, we collected mature gynes of 24 ant species. Mature gynes of species utilizing independent colony founding had a far higher relative fat content than gynes of species employing dependent colony founding. These fat reserves are stored during the period of maturation, i.e. between the time of emergence and mating, and serve as fuel during the time of colony founding to nurture the queen and the brood. Gynes of species founding independently but non claustrally were found to have a relative fat content intermediate between the values found for gynes founding independently and those founding dependently. This suggests that such gynes rely partially on their fat reserves and partially on the energy provided by prey they collect to nurture themselves and the first brood during the time of colony founding. Study of the fat content of mature gynes of all species has shown that it gives a good indication of the mode of colony founding.
Resumo:
New material of the wasp family Maimetshidae (Apocrita) is presented from four Cretaceous amber de- posits- the Neocomian of Lebanon, the Early Albian of Spain, the latest Albian/earliest Cenomanian of France, and the Campanian of Canada. The new record from Canadian Cretaceous amber extends the temporal and paleogeographical range of the family. New material from France is assignable to Guyote- maimetsha enigmatica Perrichot et al. including the first females for the species, while a series of males and females from Spain are described and figured as Iberomaimetsha Ortega-Blanco, Perrichot & Engel, gen. n., with the two new species Iberomaimetsha rasnitsyni Ortega-Blanco, Perrichot & Engel, sp. n. and I. nihtmara Ortega-Blanco, Delclòs & Engel, sp. n.; a single female from Lebanon is described and figured as Ahiromaimetsha najlae Perrichot, Azar, Nel & Engel, gen. et sp. n., and a single male from Canada is described and figured as Ahstemiam cellula McKellar & Engel, gen. et sp. n. The taxa are compared with other maimetshids, a key to genera and species is given, and brief comments made on the family.