963 resultados para suspended solids


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Compared to the Conventional Activated Sludge Process (ASP), Membrane Bioreactors (MBRs) have proven their superior performance in wastewater treatment and reuse during the past two decades. Further, MBRs have wide array of applications such as the removal of nutrients, toxic and persistent organic pollutants (POPs), which are impossible or difficult to remove using ASP. However, fouling of membrane is one of the main drawbacks to the widespread application of MBR technology and Extra-cellular Polymeric Substances (EPS) secreted by microbes are considered as one of the major foulants, which will reduce the flux (L/m2/h) through the membrane. Critical flux is defined as the flux above which membrane cake or gel layer formation due to deposition of EPS and other colloids on the membrane surface occurs. Thus, one of the operating strategies to control the fouling of MBRs is to operate those systems below the critical flux (at Sub-Critical flux). This paper discusses the critical flux results, which were obtained from short-term common flux step method, for a lab-scale MBR system treating Ametryn. This study compares the critical flux values that were obtained by operating the MBR system (consisting of a submerged Hollow-Fibre membrane with pore size of 0.4μm and effective area of 0.2m2) at different operating conditions and mixed liquor properties. This study revealed that the critical flux values found after the introduction of Ametryn were significantly lower than those of obtained before adding Ametryn to the synthetic wastewater. It was also revealed that the production of carbohydrates (in SMP) is greater than proteins, subsequent to the introduction of Ametryn and this may have influenced the membrane to foul more. It was also observed that a significant removal (40-60%) of Ametryn from this MBR during the critical flux determination experiments with 40 minutes flux-step duration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Filtration is an effective process in removing particles of various nature and sizes that are present in water and wastewater. It has been used as a final clarifying step in water treatment since the19th century. It is becoming increasingly important in the tertiary treatment step of wastewater to produce effluent of superior quality for the purpose of reuse. Filtration is particularly applied when high flow rates of water with relatively low contents of suspended solids have to be treated. In a conventional water or wastewater treatment system, the filters are usually placed after sedimentation units to remove suspended particles, which escape without settling in the sedimentation units. When chemically pretreated and flocculated water is applied to a filter without a prior-solid liquid separation it is called direct filtration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The discharge of nutrient rich effluent from aquaculture systems into coastal waters is cause for concern. Direct filtration of aquaculture wastewater, using floating medium and sand with in line flocculation, and biological filtration using activated carbon, has the potential to improve water quality for recycling within aquaculture systems. This study looked at the performance of laboratory scale dual media and activated carbon filters in suspended solids and nutrient removal in the treatment of aquaculture wastewater. The dual media filter, with flocculant FeCl3 of 9mg/L, functioned best at a velocity of 7mJh with low headloss, and good turbidity and phosphorus removal (80% and 53% respectively). The activated carbon filter removed ammonia (84%) and nitrite (71 %) in the process of nitrification with a five-hour hydraulic retention time. This paper reports preliminary results from a longer term sustainable aquaculture project.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pentachlorophenol (PCP) is a toxic chemical, often used in the formulation of pesticide, herbicide, anti fungal agent, bactericide and wood preservative. This study is aimed at evaluating the potential of membrane bioreactor (MBR) to treat PCP contaminated wastewater. Synthetic wastewater with COD of 600 mg/L was fed into the MBR at varied PCP loading rate of 12–40 mg/m3/d. A PCP removal rate of 99% and a COD removal rate of 95% were achieved at a hydraulic retention time of 12 hs and a mixed liquor suspended solids (MLSS) concentration of 10,000 mg/L. When sodium pentachlorophenol (NaPCP), which has higher solubility in water, was used in the second phase of the study, at loading rates varying from 20 to 200 mg/m3·d, the removal rate of NaPCP was higher than 99% and the removal rate of COD was more than 96%. It was also found that at higher biomass concentrations, biosorption played an important role besides the biodegradation process. Batch experiments conducted in this study revealed that the sorption capacity to be 0.63 (mg PCP/g biomass) and occurred rapidly within 60 min. This phenomenon could enhance the PCP degradation through increased contact between microorganism and PCP. Further, the membrane resistance was low (trans-membrane pressure of 14 kPa) even after more than 100 ds of operation. In addition, the toxic level of PCP in the influent could have induced the microorganisms to secrete more extra-cellular polymeric substances (EPS) for their protection, which in turn must have increased the viscosity of the mixed liquor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study is to elucidate the full-scale characteristics of an oxidation ditch (OD) retrofitted with a membrane bioreactor (MBR). Domestic wastewater entering an oxidation ditch at a flow rate of 86 m3/d was directed to a MBR retrofitted into the original secondary sedimentation tank. The MBR contained flat sheet membranes. The data collected for 2 months during the start-up of the system showed that pH was maintained at 7.2 and 6.7 in OD and MBR, respectively. Dissolved oxygen (DO) in MBR remained stable at 7.8 mg/L, while fluctuated in OD. The mixed liquor suspended solids (MLSS) in the OD remained steady at a concentration about 1000 mg/L, but it was gradually building up from 500 mg/L to 2400 mg/L in the MBR during this period. Measurements of carbohydrate and protein were made by extracting the extra cellular polymeric substances (EPS) with sodium hydroxide (NaOH) from the mixed liquor obtained from both OD and MBR. Carbohydrate was predominant in the EPS and the ratios between carbohydrate and protein converged to fixed values from the fourth week; in this case the ratio was 4.5 for OD and 5 for MBR. The variation in EPS contents showed similar trends in both OD and MBR. The integrated treatment facility removed ammonia, COD and BOD at 100, 91.6 and 97.0%, respectively. However, efficiency of nitrate and phosphate removal has not been realized yet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Discharging the nutrient rich aquaculture effluents into inland water bodies and oceans is becoming a serious concern due to the adverse effect that brings in the form of eutrophication and subsequent damages to those waters. A laboratory scale biological reactor consisting of a denitrifying compartment followed by a submerged membrane bioreactor (SMBR) compartment was used to treat 40 L d−1 of aquaculture effluent with an average concentration of 74 mg L−1 nitrate (NO3 − ). Sugar was added to the aquaculture effluent in order that to enter into the denitrifying compartment at a carbon: nitrogen ratio (C:N) of 2:1 and 4:1. A hollow fibre membrane with a pore size of 0.4 μm and a filtration area of 0.20 m2 was used in the SMBR and was operated at an average flux of 0.20 m3 m−2 d−1. An intermittent suction period of 12 min followed by a relaxation period of 3 min was maintained in the SMBR throughout the experiment. Different aeration rates of 1, 3, 5 and 10 Lpm were applied to the SMBR to determine the rate of membrane fouling and 5 Lpm aeration rate was found to be optimum with respect to the rate of fouling of membrane at a C:N ratio of 4:1. The average rate of fouling at 1, 3, 5 and 10 Lpm were 1.17, 0.70, 0.48 and 0.52 kPa d−1, respectively. The increase in the rate of fouling when the aeration was increased from 5 to 10 Lpm may be due to the breakage of suspended particles into finer particles which could have increased the fouling of membrane. It was also found that increasing the C:N ratio from 2:1 to 4:1 resulted in more cake being formed on the membrane surface as well as an increase in the reduction of NO3 − from 64% to 78%. Preliminary calculations show that 2.4 to 3.2 g of suspended solids could be accumulated per square meter of membrane surface before physical cleaning of membrane is required (at a transmembrane pressure of 20 kPa).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A laboratory-scale set-up consisting of rapid mixing device and floating medium filter was used to study the use of a downflow floating medium filter (DFF) with an in-line flocculation arrangement as a static flocculator and a prefilter. The semi-empirical mathematical model formulated incorporates flocculation within the filter, particle/floc attachment onto the filter and the detachment of flocs from the medium. The mathematical model for filtration takes into account the expansion of the filter bed. The removal efficiency of DFF and headless development were successfully simulated for different conditions of filtration velocity, filter depth and influent suspended solids (SS). The values of attachment coefficient a(p)β and headless coefficient β1 were found to be independent of filtration velocity, filter depth and influent SS concentration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article presents a model of growth of naturally occurring heterotrophic bacteria in the bulk water phase in the absence of disinfectant. The model considers growth with carbon, phosphorus, and nitrogen balance, death and lysis of bacteria, and conversion of less biodegradable organic carbon to assimilable organic carbon. Experimental data from two raw and two treated waters were used to test the model. The model describes the increase of live and dead bacterial cells in the water phase, and its output closely matches the experimental data. Such a model has the ability to characterize water nutrient status as well as to predict behavior of indigenous heterotrophic bacteria. The ability to predict bacterial population dynamics with respect to nutrients is beneficial for water treatment optimization. The model, based on microbiological measurements, helps to characterize treated water quality and project performance in terms of water quality into a distribution system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Agricultural discharge of herbicides to the Great Barrier Reef (GBR) poses significant threat to the marine ecosystem. This study evaluates the performance of a hybrid treatment system consists of a membrane bioreactor (MBR), UV disinfection unit and a granular activated carbon (GAC) column in treating Ametryn which is one of the major herbicides in agricultural discharges. While the MBR alone removes only 40% of Ametryn at a hydraulic retention time of 7.8 hours, the hybrid system removed Ametryn to below detection levels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Agro-industries are a life-line for sustainable future of human kind. However, the wastewater generated by agro-industries poses direct threat to the same sustainable future by polluting the freshwater sources when discharged into those freshwater sources. Thus, we need both advanced treatment technologies to treat those wastewater streams generated and better reuse practices for the treated effluents. Reverse osmosis (RO) is one of the advanced treatments to treat dissolved solids that are present in agricultural wastewater streams. But, RO is very sensitive to suspended solids (SS) present in the wastewater streams. Those SS can foul the RO membrane and make it ineffective in producing treated effluent at desired rates. Therefore, suitable pre-treatment scheme is necessary to treat the agro-wastewater streams before passing through RO. This study focuses on the qualitative and quantitative ranking of the available conventional and modern pre-treatment technologies as pre-treatment for RO. This study considers wastewater that has been treated through a secondary treatment system for example activated sludge process as the target water that needs pre-treatment. Based on qualitative ranking of conventional pre-treatment options, the Lime clarification/Granular Media filtration (GMF) option is ranked as the best; whereas finescreens/ micro-screens option ranked as the least preferred option based on the scores they attained in treating the water quality parameters that are considered essential. Based on the quantitative ranking, the low pressure membrane technology such as ultra-filtration (UF) stood first and microfiltration (MF) stood last.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wet textile colouration has the highest environmental impact of all textile processing steps. It consumes water, chemicals and energy and produces liquid, heat and gas waste streams. Liquid effluent streams are often quite toxic to the environment. There are a number of different dyeing processes, normally fibre type specific, and each has a different impact on the environment. This research investigated the energy, chemical and water requirements for the exhaust colouration of cotton, wool, polyester and nylon. The research investigated the liquid waste biological oxygen demand, total organic carbon dissolved solids, suspended solids, pH and colour along with the energy required for drying after colouration. Polyester fibres had the lowest impact on the environment with low water and energy consumption in dyeing, good dye bath exhaustion, the lowest dissolved solids levels in waste water, relatively neutral pH effluent and low energy in drying. The wool and nylon had similar dyebath requirements and outputs however the nylon could be dyed at far lower liquor ratios and hence provided better energy and water use figures. Cotton performed badly in all of the measured parameters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two emergent macrophytes, Arundo donax and Phragmites australis, were established in experimental subsurface flow, gravel-based constructed wetlands (CWs) and challenged by untreated stormwater collected from the hard-pan and other surfaces of a dairy processing factory in south-west Victoria, Australia. The hydraulic loading rate was tested at two levels, sequentially, 3.75 and 7.5 cm day -1. Some of the monitored variables were removed more efficiently by the planted beds in comparison to unplanted CWs (biochemical oxygen demand (BOD), total nitrogen (TN) and total phosphorus (TP); p<0.007) but there was no significant difference between the A. donax and P. australis CWs in removal of BOD, suspended solids (SS) and TN (p>0.007) at 3.75 cm day -1 or SS and TN at 7.5 cm day -1. At 3.75 cm day -1, BOD, SS, TN and TP removal in the A. donax and P. australis CWs was 71%, 61%, 78% and 75% and 65%, 60%, 73% and 41%, respectively. Nutrient removal at 7.5 cm day -1 in the A. donax and P. australis beds was 87%, 91%, 84% and 71% and 96%, 94%, 87% and 55%, respectively. As expected, the A. donax CWs produced considerably more biomass (10±1.2 kg wet weight) than the P. australis CWs (2.7±1.2 kg wet weight). This equates to approximately 107 and 36 tonnes ha -1 year -1 biomass (dry weight) for A. donax and P. australis, respectively (assuming 250 days of growing season and singlecut harvest). The performance similarity of the A. donax- and P. australis-planted CWs indicates that either may be used in HSSF wetlands treating dairy factory stormwater, although the planting of A. donax provides additional opportunities for secondary income streams through utilisation of the biomass produced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reverse osmosis (RO) is the most preferable process for water recovery from secondary effluent (SE) because of its higher rejection of impurities with lower associated cost and higher quality of product. Fouling still is a major challenge during the water recovery due to higher contaminant loadings in SE and high rejection capability of this membrane. The presence of suspended solids, colloidal and organic matters, and high level of biological activities in SE further elevate fouling potentiality. This review was performed to identify major foulants causing hindrance in sustainable application of reverse osmosis and to present available pre-treatment options for these foulants. There are four fouling types present in RO namely; bio-fouling, inorganic/scaling, organic, and particulate fouling. Among them; bio-fouling is less understood but dominant since the pre-treatment options are not well developed. Other fouling mechanisms have been overcome by well developed pre-treatments. The major foulants for RO are dissolved and macromolecular organic substances, sparingly soluble inorganic compounds, colloidal and suspended particles, and micro-organisms. Some of these potential fouling water quality parameters (PFWQPs) are interrelated with each others such as electrical conductivity is a surrogate measure of total dissolved solids with established stable relationship. Most of these PFWQPs such as total suspended solids, turbidity, chemical oxygen demand can be removed by conventional pre-treatment; some such as colloidal particles and micro-organisms by modern options and even others such as endocrine disrupting compounds, pharmaceutical and personal care products are still challenging for current pre-treatments. These foulants need to be identified properly to integrate appropriate pre-treatments for minimizing fouling potentiality to increase water recovery at minimal costs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Agricultural discharge of herbicides to the Great Barrier Reef (GBR) poses significant threat to the marine ecosystem. This study evaluates the performance of a hybrid treatment system consists of a membrane bioreactor (MBR), UV disinfection unit and a granular activated carbon (GAC) column in treating ametryn which is one of the major herbicides in agricultural discharges. While the MBR alone removes only 40% of ametryn at a hydraulic retention time of 7.8 h, the hybrid system removed ametryn to below detection levels.