995 resultados para surface coordination compound


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification, caused by increased atmospheric carbon dioxide (CO2) concentrations, is currently an important environmental problem. It is therefore necessary to investigate the effects of ocean acidification on all life stages of a wide range of marine organisms. However, few studies have examined the effects of increased CO2 on early life stages of organisms, including corals. Using a range of pH values (pH 7.3, 7.6, and 8.0) in manipulative duplicate aquarium experiments, we have evaluated the effects of increased CO2 on early life stages (larval and polyp stages) of Acropora spp. with the aim of estimating CO2 tolerance thresholds at these stages. Larval survival rates did not differ significantly between the reduced pH and control conditions. In contrast, polyp growth and algal infection rates were significantly decreased at reduced pH levels compared to control conditions. These results suggest that future ocean acidification may lead to reduced primary polyp growth and delayed establishment of symbiosis. Stress exposure experiments using longer experimental time scales and lower levels of CO2 concentrations than those used in this study are needed to establish the threshold of CO2 emissions required to sustain coral reef ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increase in atmospheric CO2 due to anthropogenic activity results in an acidification of the surface waters of the oceans. The impact of these chemical changes depends on the considered organisms. In particular, it depends on the ability of the organism to control the pH of its inner fluids. Among echinoderms, this ability seems to differ significantly according to species or taxa. In the present paper, we investigated the buffer capacity of the coelomic fluid in different echinoderm taxa as well as factors modifying this capacity. Euechinoidea (sea urchins except Cidaroidea) present a very high buffer capacity of the coelomic fluid (from 0.8 to 1.8 mmol/kg SW above that of seawater), while Cidaroidea (other sea urchins), starfish and holothurians have a significantly lower one (from -0.1 to 0.4 mmol/kg SW compared to seawater). We hypothesize that this is linked to the more efficient gas exchange structures present in the three last taxa, whereas Euechinoidea evolved specific buffer systems to compensate lower gas exchange abilities. The constituents of the buffer capacity and the factors influencing it were investigated in the sea urchin Paracentrotus lividus and the starfish Asterias rubens. Buffer capacity is primarily due to the bicarbonate buffer system of seawater (representing about 63% for sea urchins and 92% for starfish). It is also partly due to coelomocytes present in the coelomic fluid (around 8% for both) and, in P. lividus only, a compound of an apparent size larger than 3 kDa is involved (about 15%). Feeding increased the buffer capacity in P. lividus (to a difference with seawater of about 2.3 mmol/kg SW compared to unfed ones who showed a difference of about 0.5 mmol/kg SW) but not in A. rubens (difference with seawater of about 0.2 for both conditions). In P. lividus, decreased seawater pH induced an increase of the buffer capacity of individuals maintained at pH 7.7 to about twice that of the control individuals and, for those at pH 7.4, about three times. This allowed a partial compensation of the coelomic fluid pH for individuals maintained at pH 7.7 but not for those at pH 7.4.