832 resultados para sulfur species and volatile fatty acids
Resumo:
A study was carried out to determine the effect of tocopherol acetate along with cod liver oil astaxanthin enriched Moina micrura (MC- control, Ml- tocopherol acetate enriched, M2-tocopherol acetate combined with cod liver oil (CLO) enriched and M3- tocopherol acetate combined with astaxanthin enriched) on growth, survival and fatty acid composition of M. rosenbergii (de Man) larvae (TC- unenriched Moina fed larvae, Tl- tocopherol acetate enriched Moina fed larvae, T2- tocopherol acetate + CLO enriched Moina fed larvae to T3 – tocopherol acetate+ astaxanthin enriched Moina fed larvae). Growth was expressed as the time taken in to the settlement of 95% post larvae. Maximum growth i.e., the lowest time taken to the 95% PL settlement (40 days) and the maximum survival percentage (61%) was observed in both T2 and T3 treatments fed with M2 and M3 Moina respectively. Minimum growth and survival was observed in unenriched Moina fed larvae (TC). In larval treatments T2, (larvae fed with (M2) vitamin E + CLO enriched Moina), showed a higher percentage of EPA, DHA and higher HUFA level than other treatments.
Resumo:
The triglyceride fatty acid components from the heart lipid of Puntius sarana of different sizes have been characterized by thin-layer and gas liquid chromatography. Csub(10) to Csub(24) acids including both odd-numbered and branched chain acids were detected. The major constituents were ante-iso Csub(10), Csub(10), Csub(12:2), Csub(14), Csub(16), Csub(16:1),Csub(17), Csub(18) , Csub(18:1), Csub(18:2), Csub(18:3) and Csub(20:4) while twenty other acids were detected in lower proportion. The composition of these acids and their variation with size of fish have been investigated and discussed.
Resumo:
This experiment was conducted to investigate the effect of using n-3 HUFA and Vitamin C enriched Artemia urmiana Nauplii Five difference treament were tested: for Caspian salmon (Salmo trutta caspius) larvae compare with artificial food in five treatment: (1) Artificial food, (2) Newly hatched Artemia (3) n-3 HUFA enriched Artemia (4) n-3 HUFA + 10% Ascorbyl Palmitate enriched Artemia (5) n-3 HUFA+20% Ascorbyl palmitate enriched Artemia during 15 days then all treatment were fed with artificial food during 20 days. In days of 15, larvae fed with newly hatched Artemia didn’t show significant difference of growth rate and survival compared to larvae fed with n-3 HUFA and Vitamn C enriched live food (p<0.05), However all treatment which fed live food have better growth rate and survival compred to larvae fed artificial food. Larvae fed with enriched Artemia with n-3 HUFA + 20% Ascorbyl palmitate has best result of temperature resistance at 26'C and 28'C. There is not significant difference between treatment (1) and (2), (3) and in this manner between (2), (3) and (4), (5) (P>0.05). In days of 35, larvae fed n-3 HUFA + 10% and 20% Ascorbyl pamlitate show better wet weight and dry weight compared to other treatment (P<0.05). Larvae fed n-3 HUFA Artemia showed significant difference compared to treatment (1) and (2), However there is not significant difference between treatment (1) and (2). Larvae fed artificial food show less and significant difference of survival compared to other treatment (P<0.05). Larvae fed artificial food show least of temperature resistance at 26'C and 28'C , However, there is not significant difference between all treatment (P<0.05).
Resumo:
Here we reported the fatty-acids and their δ 13C values in seep carbonates collected from Green Canyon lease block 185 (GC 185; Sample GC-F) at upper continental slope (water depth: ∼540 m), and Alaminos Canyon lease block 645 (GC 645; Sample AC-E) at lower continental slope (water depth: ∼2200 m) of the Gulf of Mexico. More than thirty kinds of fatty acids were detected in both samples. These fatty acids are maximized at C16. There is a clear even-over-odd carbon number predominance in carbon number range. The fatty acids are mainly composed of n-fatty acids, iso-/anteiso-fatty acids and terminally branched odd-numbered fatty acids (iso/anteiso). The low δ 13C values (−39.99‰ to.32.36‰) of n-C12:0, n-C13:0, i-C14:0and n-C14:0 suggest that they may relate to the chemosynthetic communities at seep sites. The unsaturated fatty acids n-C18:2 and C18:1Δ9 have the same δ 13C values, they may originate from theBeggiatoa/Thioploca. Unlike other fatty acids, the terminally branched fatty acids (iso/anteiso) show lowerδ 13C values (as low as −63.95‰) suggesting a possible relationship to sulfate reducing bacteria, which is common during anaerobic oxidation of methane at seep sites.
Resumo:
The fatty acid compositions of 22 species of marine macrophytes, belonging to the Ceramiales, Cryptonemiales, Nemalionales, Laminariales, Chordariales, Scytosiphonales, Desmarestiales, Dictyosiphonales, Fucales, Dictyotales and Ulvales and collected from the Bohai Sea, were determined by capillary gas chromatography. The contents of polyunsaturated fatty acids (FAs) in the Bohai Sea algae, in comparison with the same species from the Yellow Sea were found to be lower. Red algae had relatively high levels of the acids 16:0, 18:1(n-7), 18:1(n-9), 20:5(n-3) and 20:4(n-6), and those examined were rich in C-20 PUFAs, these chiefly being arachidonic and eicosapentaenoic acids. The major FAs encountered in the Phaeophyta were 14:0, 16:0, 18:1(n-9), 18:2(n-6), 18:3(n-3), 18:4(n-3), 20:4(n-6) and 20:5(n-3). C18PUFAs are of greater abundance in the brown algae than in the red algae examined. All three green algae from the Ulvales had similar fatty acid patterns with major components, 16:0, 16:4(n-3), 18:1(n-7), 18:2(n-6), 18:3(n-3), and 18:4(n-3). They contained 16:3(n-3) and more 16:4(n-3), were rich in C18PUFAs, chiefly 18:3(n-3) and 18:4(n-3) and had 18:1(n-7)/18:1 (n-9) ratios higher than 1. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The seed oil from Nitraria tangutorum samples was obtained by supercritical carbon dioxide extraction methods. The extraction parameters for this methodology, including pressure, temperature, particle size and extraction time, were optimized. The free fatty acids in the seed oil were separated with a pre-column derivation method and 1,2-benzo-3,4-dihydrocarbazole-9-ethyl-p-toluenesulfonate (BDETS) as a labeling regent, followed by high-performance liquid chromatography (HPLC) with fluorescence detection. The target compounds were identified by mass spectrometry with atmospheric pressure chemical ionization (APCI in positive-ion mode). HPLC analysis shows that the main compositions of the seed oil samples were free fatty acids (FFAs) in high to low concentrations as follows: linoleic acid, oleic acid, hexadecanoic acid and octadecanoic acid. The assay detection limits (at signal-to-noise of 3:1) were 3.378-6.572 nmol/L. Excellent linear responses were observed, with correlation coefficients greater than 0.999. The facile BDETS derivatization coupled with mass spectrometry detection allowed the development of a highly sensitive method for analyzing free fatty acids in seed oil by supercritical CO2 extraction. The established method is highly efficient for seed oil extraction and extremely sensitive for fatty acid profile determination. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A method for the determination of long and short chain free fatty acids (FFAs), using 1-[2-(ptoluenesulfonate)-ethyll-2-phenylimidazole-[4,5-f-9,10-phenanthrene (TSPP) as labeling reagent, has been developed. Identification of FFA derivatives was carried out by HPLC-MS with atmospheric pressure chemical ionization (APCI) in positive ion mode. Gradient elution on an Agilent Eclipse XDB-C-8 column gave good separation of the derivatives. Excellent linear responses were observed and good compositional data could be obtained from as little as 200 mg of bryophyte plants and soil samples. Facile TSPP derivatization coupled with HPLC-APCI-MS analysis allowed the development of a highly sensitive method for the quantitative analysis of trace level of FFAs from biological and natural environmental samples.
Resumo:
A sensitive method for the determination of 30 kinds of free fatty acids (FFAs, C-1-C-30) with 1-[2-(p-toluenesulfonate)-ethyl]-2-phenylimidazole-[4,5-f] 9,10-phenan- threne (TSPP) as labeling reagent and using high performance liquid chromatography with fluorescence detection and identification by online postcolumn mass spectrometry with atmospheric pressure chemical ionization (APCI) source in positive-ion mode (HPLC/MS/APCI) has been developed. TSPP could easily and quickly label FFAs in the presence of K2CO3 catalyst at 90 degrees C for 30 min in N,N-dimethylformamide (DMF) solvent, and maximal labeling yields close to 100% were observed with a 5-fold excess of molar reagent. Derivatives were stable enough to be efficiently analyzed by high performance liquid chromatography. TSPP was introduced into fatty acid molecules and effectively augmented MS ionization of fatty acid derivatives and led to regular MS and MS/MS information. The collision induced cleavage of protonated molecular ions formed specific fragment ions at m/z [MH](+)(molecular ion), m/z [M'+CH2CH2](+)(M' was molecular mass of the corresponding FFA) and m/z 295.0 (the, mass of protonated molecular core structure of TSPP). Fatty acid derivatives were separated on a reversed-phase Eclipse XDB-C-8 column (4.6 x 150 mm, 5 mu m, Agilent) with a good baseline resolution in combination with a gradient elution. Linear ranges of 30 FFAs are 2.441 x 10(-3) to 20 mu mol/L, detection limits are 3.24 similar to 36.97 fmol (injection volume 10 mu L, at a signal-to-noise ratio of 3, S/N 3:1). The mean interday precision ranged from 93.4 to 106.2% with the largest mean coefficients of variation (R.S.D.) < 7,5%. The mean intraday precision for all standards was < 6.4% of the expected concentration. Excellent linear responses were observed with correlation coefficients of > 0.9991. Good compositional data could be obtained from the analysis of extracted fatty acids from as little as 200 mg of bryophyte plant samples.Therefore, the facile TSPP derivatization coupled with HPLC/MS/APCI analysis allowed the development of a highly sensitive method for the quantitation of trace levels of short and long chain fatty acids from biological and natural environmental samples.
Resumo:
A sensitive method for the determination of long-chain fatty acids (LCFAs) (>C20) using 1-[2-(p-toluenesulfonate)-ethyl]-2-phenylimidazole-[4.5-f]-9,10-phenanthrene (TSPP) as tagging reagent with fluorescence detection and identification with post-column APCI/MS has been developed. The LCFAs in bryophyte plant samples were obtained based on distillation extraction with 1: 1 (v/v) chloroform/methanol as extracting solvent. TSPP could easily and quickly label LCFAs at 90 degrees C in the presence of K2CO3 catalyst in DMF. Eleven free LCFAs from the extracts of bryophyte plants were sensitively determined. Maximal labeling yields close to 100% were observed with a five-fold excess of molar reagent. Separation of the derivatized fatty acids exhibited a good baseline resolution in combination with a gradient elution on a reversed-phase Eclipse XDB-C-8 column. Calculated detection limits from 1.0 pmol injection, at a signal-to-noise ratio of 3, were 26.19-76.67 fmol. Excellent linear responses were observed with coefficients of >0.9996. Good compositional data were obtained from the analysis of the extracted LCFAs containing as little as 0.2 g of bryophyte plant samples. Therefore, the facile TSPP derivatization coupled with HPLC/APCI/MS analysis allowed the development of a highly sensitive method for the quantitation of trace levels of LCFAs from biological and natural environmental samples. (c) 2006 Elsevier B.V. All rights reserved.