145 resultados para sulfone
Resumo:
Novel macrocyclic receptors which bind electron-donor aromatic substrates via π-stacking donor- acceptor interactions are obtained by cyclo-imidization of an amine-functionalized arylether-sulfone with pyromellitic- and 1,4,5,8-naphthalene-tetracarboxylic dianhydrides. These macrocycles complex with a wide variety of π-donor substrates including tetrathiafulvalene, naphthalene, anthracene, pyrene, perylene, and functional derivatives of these polycyclic hydrocarbons. The resulting supramolecular assemblies range from simple 1:1 complexes, to [2]- and [3]-pseudorotaxanes, and even (as a result of crystallographic disorder) an apparent polyrotaxane. Direct, five-component self-assembly of a metal-centred [3]pseudorotaxane is also observed, on complexation of a macrocyclic ether-imide with 8-hydroxyquinoline in the presence of palladium(II) ions. Binding studies in solution were carried out by 1H NMR and UV-visible spectroscopy, and the stoichiometries of binding were confirmed by Job plots based on charge-transfer absorption bands. The highest association constants are found for strong π-donor guests with large surface-areas, notably perylene and 1-hydroxypyrene, for which Ka values of 1.4 x 103 and 2.3 x 103 M-1 respectively are found. Single crystal X-ray analyses of the receptors and their derived complexes reveal large, induced-fit distortions of the macrocyclic frameworks as a result of complexation. These structures provide compelling evidence for the existence of strong, attractive forces between the electronically-complementary aromatic π-systems of host and guest.
Resumo:
The different triplet sequences in high molecular weight aromatic copolyimides comprising pyromellitimide units ("I") flanked by either ether-ketone ("K") or ether-sulfone residues ("S") show different binding strengths for pyrene-based tweezer-molecules. Such molecules bind primarily to the diimide unit through complementary π-π-stacking and hydrogen bonding. However, as shown by the magnitudes of 1H NMR complexation shifts and tweezer-polymer binding constants, the triplet "SIS" binds tweezer-molecules more strongly than "KIS" which in turn bind such molecules more strongly than "KIK". Computational models for tweezer-polymer binding, together with single-crystal X-ray analyses of tweezer-complexes with macrocyclic ether-imides, reveal that the variations in binding strength between the different triplet sequences arise from the different conformational preferences of aromatic rings at diarylketone and diarylsulfone linkages. These preferences determine whether or not chain-folding and secondary π−π-stacking occurs between the arms of the tweezermolecule and the 4,4'-biphenylene units which flank the central diimide residue.
Resumo:
The oxidative desulfurization process (ODS) of a commercial diesel fuel was performed under mild conditions in the presence of catalysts based on vanadium or manganese, supported on alumina, clays (commercial, natural and pillared) and zeolites (NaX, NaY, beta, mordenite and ZSM-5). The catalysts were synthesized by wet impregnation and characterized by X-ray diffraction, textural analysis by N2 adsorption and scanning electron microscopy. The dibenzothiophene (DBT) was used as sulfur compound in catalytic evaluation. The reactions were performed using acetonitrile as solvent and the hydrogen peroxide as oxidant at 55°C. The reaction products were analized by gas chromatography (GC-FID). In the studied conditions, the process was efficient due to the DBT was converted to its corresponding sulfone. Both DBT and corresponding sulfone were extracted by the solvent. Removals and oxidations up to 100% of sulfur compound were achieved. The catalysts supported on ZSM-5 zeolite showed are more effective for oxidation reaction of sulfur compound, presenting the best results. It was observed for oxidation reaction, that vanadium catalysts were more effective and manganese catalysts showed best results for removal of sulfur compounds
Resumo:
After treatment lipophilic pesticides tend to diffuse by penetrating the epicuticular wax of fruits. In this way, solar radiation only acts on pesticide molecules after passing through the waxes. The effect of epicuticular waxes of three fruits (orange, nectarine, and olive) on the photodegradation of fenthion was studied. The waxes affected the photodegradation process of fenthion. The decay rate of fenthion increased in the presence of orange and nectarine waxes, while it decreased when olive wax was used. In all waxes, the transformation of fenthion produced mainly fenthion sulfoxide and low amounts of fenthion sulfone. In orange wax, 50% of the initial fenthion was transformed into unknown compounds. In nectarine wax, fenthion was degraded stoichiometrically into fenthion sulfoxide and fenthion sulfone. In olive wax, the photodegradation of fenthion yielded about 80% of fenthion sulfoxide.
Resumo:
The persistence and metabolism of fenthion in orange fruit were studied in field conditions. The fenthion was transformed to fenthion sulfoxide and fenthion sulfone. Sunlight photodegradation experiments showed that this transformation is due to the action of sunlight. Residues were found only in the fruit peel. Fenthion showed a rapid degradation rate with a half-life of ca. 6 days. Fenthion sulfoxide was degraded more slowly with a half-life of ca. 14 days and represented the major residue. Fenthion sulfone was present in low quantities.
Resumo:
Autoimmune bullous dermatoses are diseases in which blisters and vesicles are the primary and fundamental types of skin lesion. Their classification is based on the location of the blister: intraepidermal and subepidermal. Patients produce autoantibodies against self-specific structures of the skin detectable by immunofluorescence techniques, immunoblotting and ELISA. Recent advances in molecular and cellular biology have brought to knowledge these self-antigens, against which patients are sensitized, and which are found in epidermis or in the dermo-epidermal junction. These are low incidence, but high morbidity diseases that may be fatal. The aim of this article is to review and describe the progress of four autoimmune vesiculobullous disorders: endemic pemphigus foliaceous (wild fire), pemphigus vulgaris, bullous pemphigoid and dermatitis herpetiformis. ©2009 by Anais Brasileiros de Dermatologia.
Resumo:
Background: Several anti-inflammatory drugs have been used to reduce pain and discomfort after periodontal surgeries. This study evaluates the efficacy of using etoricoxib and dexamethasone for pain prevention after open-flap debridement surgery. Methods: For this prospective, double-masked, crossover, placebo-controlled, randomized clinical trial, open-flap debridement surgeries were performed on 15 patients (eight males and seven females, age range 20 to 56 years: mean age ± SD: 40 ± 9.7 years) who presented with chronic periodontitis after nonsurgical periodontal therapy at three quadrants. Each patient underwent three surgical procedures at intervals of 30 days and received one of the following premedication protocols 1-hour before surgery: group 1 = placebo, group 2 = 8 mg dexamethasone, and group 3 = 120 mg etoricoxib. Rescue medication (750 mg acetaminophen) was given to each patient who was instructed to take it when necessary. Pain intensity and discomfort were evaluated by a 101-point numeric rate scale and a four-point verbal rate scale, respectively, hourly for the first 8 hours after surgery and three times a day on the following 3 days. Results: The results demonstrate that groups 2 and 3 present reduced postoperative pain-intensity levels compared to group 1. There were statistically significant differences at the 4, 5, 6, 7, and 8 hour-periods after surgery (Friedman test; P<0.05). Furthermore, rescue-medication intake was significantly lower for groups 2 and 3 than for group 1 (analysis of variance; P<0.02). Conclusion: The adoption of a preemptive medication protocol using etoricoxib or dexamethasone may be considered effective for pain and discomfort prevention after open-flap debridement surgeries.
Resumo:
In this work, the chemical interaction between carbon nanotubes (MWCNT) functionalized with acyl chloride (SOCl2) and polymer chain tetrafuncional N,N,N′,N′-tetraglycidyl-4,4′- diaminodiphenylmethane (TGDDM) and hardener 4,4′diaminodiphenyl sulfone (DDS) has been monitored by Fourier transform infrared spectroscopy (FTIR) with a attenuated total reflectance (ATR) coupled. MWCNT were obtained from the pyrolysis of a mixture of camphor and ferrocene into a oven. The functionalization process was done by oxidative treatment in order to incorporate carboxylic group over the walls of MWCNT, before to be used SOCl2. The functionalized carbon nanotubes were evaluated by X-ray photoelectron spectroscopy (XPS), Raman and transmission electron microscopy (TEM). Nanostructured composites were processed by using epoxy resin with MWCNT in varying percentages. In this work it was observed that different percentages of functionalized nanotubes modify the interaction between the composite matrix and curing agent, where can be observed that in specimens with content less than 1 wt% MWCNT the chemical bond occurs preferentially from the opening of the SO double bond of the hardener and when is used MWCNT content higher than 1 wt% there is little chemical interaction with the SO bond of the hardener and most MWCNT binds to amine. © 2013 Elsevier Ltd.
Resumo:
Dapsona é uma sulfona sintética que é utilizada como um antibiótico em seres humanos e animais para prevenir e tratar doenças, incluindo hanseníase, tuberculose, malária, e pneumonia por Pneumocystis carinii e encefalites por Toxoplasma gondii em pacientes com síndrome da imunodeficiência adquirida (AIDS), bem como em doenças anti-inflamatórias como dermatite herpetiforme. No entanto, este fármaco também está associado com vários efeitos adversos, incluindo a hemólise relacionada com a dose, metemoglobinemia, psicose, neuropatia periférica, agranulocitose, anemia aplástica, síndrome de hipersensibilidade, síndrome de sulfona, e outros. Destes efeitos, a metemoglobinemia é o mais comum efeito adverso da dapsona, que leva a anemia funcional e hipóxia celular com sintomas de cianose, dores de cabeça, fadiga, taquicardia, fraqueza e tonturas. Assim, esta revisão sumariza informações relevantes sobre a estrutura, mecanismo de ação, indicação clínica, e reações adversas de dapsona.
Resumo:
Compounds released into the environment can induce genetic alterations in living organisms. A group of chemicals that shows proven toxicity is the pesticides, and the insecticides are the most harmful. The insecticides of the family phenylpyrazole have wide application both in agriculture and in homes. Fipronil, an insecticide of this chemical group, is widely used in various cultures and in homes, mainly for fighting fleas and ticks on dogs and cats. The use of fipronil may represent a risk to man and the environmental health, since this pesticide can potentially induce cell death, regardless of cell type. Fipronil, when in contact with the environment, can undergo various degradation processes, including photodegradation. The toxic effect of one of its metabolites derived from photodegradation, sulfone-fipronil, is approximately 20 fold as great as fipronil itself. The A. cepa test system was used to evaluate cytotoxic, genotoxicity and mutagenic effects of fipronil before and after phptodegradation. Seeds of Allium cepa were subjected to solutions of fipronil, pre-exposed or not exposed to degradation by sunlight. The germination tests were conducted both under the effect of light and in the dark. We evaluated the cumulative potential of this insecticide using 48 and 72-hours recovery tests. The results showed that when fipronil was previously exposed to the sun, it presented a greater genotoxic and mutagenic potential, showing that the metabolites formed by photodegradation can show more harmfull effects
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A method for the identification and quantification of pesticide residues in water, soil, and sediment samples has been developed, validated, and applied for the analysis of real samples. The specificity was determined by the retention time and the confirmation and quantification of analyte ions. Linearity was demonstrated over the concentration range of 20 to 120 µg L(-1), and the correlation coefficients varied between 0.979 and 0.996, depending on the analytes. The recovery rates for all analytes in the studied matrix were between 86% and 112%. The intermediate precision and repeatability were determined at three concentration levels (40, 80, and 120 µg L(-1)), with the relative standard deviation for the intermediate precision between 1% and 5.3% and the repeatability varying between 2% and 13.4% for individual analytes. The limits of detection and quantification for fipronil, fipronil sulfide, fipronil-sulfone, and fipronil-desulfinyl were 6.2, 3.0, 6.6, and 4.0 ng L(-1) and 20.4, 9.0, 21.6, and 13.0 ng L(-1), respectively. The method developed was used in water, soil, and sediment samples containing 2.1 mg L(-1) and 1.2% and 5.3% of carbon, respectively. The recovery of pesticides in the environmental matrices varied from 88.26 to 109.63% for the lowest fortification level (40 and 100 µg kg(-1)), from 91.17 to 110.18% for the intermediate level (80 and 200 µg kg(-1)), and from 89.09 to 109.82% for the highest fortification level (120 and 300 µg kg(-1)). The relative standard deviation for the recovery of pesticides was under 15%.
Resumo:
A high-performance liquid chromatographic method using polar organic mode was developed to analyze albendazole (ABZ), albendazole sulfone (ABZSO(2)) and the chiral and active metabolite albendazole sulfoxide (ABZSOX, ricobendazole) that was further applied in stereoselective fungal biotransformation studies. The chromatographic separation was performed on a Chiralpak AS column using acetonitrile:ethanol (97:3, v/v) plus 0.2% triethylamine and 0.2% acetic acid as the mobile phase at a flow rate of 0.5 mL min(-1). The present study employed hollow fiber liquid-phase microextraction as sample preparation. The method showed to be linear over the concentration range of 25-5000 ng mL(-1) for each ABZSOX enantiomer, 200-10,000 ng mL(-1) for ABZ and 50-1000 ng mL(-1) for ABZSO(2) metabolite with correlation coefficient (r)> 0.9934. The mean recoveries for ABZ, rac-ABZSOX and ABZSO(2) were, respectively, 9%, 33% and 20% with relative standard deviation below 10%. Within-day and between-day precision and accuracy assays for these analytes were studied at three concentration levels and were lower than 15%. This study opens the door regarding the possibility of using fungi in obtaining of the active metabolite ricobendazole. Nigrospora sphaerica (Sacc.) E. W. Mason (5567), Pestalotiopsis foedans (VR8), Papulaspora immersa Hotson (SS13) and Mucor rouxii were able to stereoselectively metabolize ABZ into its chiral metabolite. Among them, the fungus Mucor rouxii was the most efficient in the production of (+)-ABZSOX. (C) 2011 Elsevier B.V. All rights reserved.