938 resultados para substrate utilisation, Fatmax, maximal fat oxidation, indirect calorimetry
Resumo:
Objective: In this preliminary study we tested the effect of short-term carbohydrate supplementation on carbohydrate oxidation and walking performance in peripheral arterial disease. Methods: Eleven patients with peripheral arterial disease and intermittent claudication and 8 healthy control subjects completed several weeks of baseline exercise testing, then were given supplementation for 3 days with a carbohydrate solution and placebo. Maximal walking time was assessed with a graded treadmill test. Carbohydrate oxidation during a submaximal phase of this test was measured with indirect calorimetry. At the end of baseline testing a biopsy specimen was taken from the gastrocnemius muscle, and the active fraction of pyruvate dehydrogenase complex activity was determined. Results: Carbohydrate supplementation resulted in a significant increase in body weight and carbohydrate oxidation during exercise in patients with intermittent claudication and control subjects. Maximal walking time decreased by 3% in control subjects, whereas it increased by 6% in patients with intermittent claudication (group X treatment interaction, P < .05). There was a wide range of performance responses to carbohydrate supplementation among patients with claudication (-3%-37%). This effect was greater in poorer performers, and was negatively correlated (P < .05) with muscle pyruvate dehydrogenase complex activity. Conclusion: Preliminary data suggest that carbohydrate oxidation during exercise might contribute to exercise intolerance in more dysfunctional patients with intermittent claudication and that carbohydrate supplementation might be an effective therapeutic intervention in these patients.
Resumo:
Introduction - Knowledge on the metabolic changes and nutritional needs during the postsurgical anabolic phase in infants is scarce. This analysis explores the associations of resting energy expenditure (REE) and macronutrient utilization with body composition of full-term infants, during catch-up growth after corrective surgery of major congenital anomalies. Methods - A cohort of full-term appropriate for-gestational-age neonates subjected to corrective surgery of major congenital anomalies were recruited after gaining weight for at least one week. REE and macronutrient utilization, measured by respiratory quotient (RQ), were assessed by indirect calorimetry using the Deltatrac II Metabolic Monitor ®. Body composition, expressed as fat-free mass (FFM), fat mass (FM) and adiposity defined as percentage of FM (% FM), was measured by air displacement plethysmography using the Pea Pod ®. Results - Four infants were included at 3 to 5 postnatal weeks. Recommended energy and macronutrient intakes for healthy term infants were provided. Through the study, the median (min-max) REE (Kcal/Kg FFM/d) was 70.8 (60.6-96.1) and RQ was 0.99 (0.72-1.20). Steady increases in both body weight and FFM were associated with initial decrease in FM and adiposity followed by their increase. Low RQ preceded decrease in adiposity. Conclusion - The marked adiposity depletion, not expected during steady weight gain in the postsurgical period, prompts us to report this finding. The subsequent adiposity catch-up was associated with relatively high REE and RQ, suggesting preferential oxidation of carbohydrates and preservation of lipids for fat storage.
Resumo:
Embora o hormônio do crescimento (GH) seja um dos hormônios mais estudados, vários de seus aspectos fisiológicos ainda não estão integralmente esclarecidos, incluindo sua relação com o exercício físico. Estudos mais recentes têm aumentado o conhecimento a respeito dos mecanismos de ação do GH, podendo ser divididos em: 1) ações diretas, mediadas pela rede de sinalizações intracelulares, desencadeadas pela ligação do GH ao seu receptor na membrana plasmática; e 2) ações indiretas, mediadas principalmente pela regulação da síntese dos fatores de crescimento semelhantes à insulina (IGF). Tem sido demonstrado que o exercício físico é um potente estimulador da liberação do GH. A magnitude deste aumento sofre influência de diversos fatores, em especial, da intensidade e do volume do exercício, além do estado de treinamento. Atletas, normalmente, apresentam menor liberação de GH induzida pelo exercício que indivíduos sedentários ou pouco treinados. Evidências experimentais demonstram que o GH: 1) favorece a mobilização de ácidos graxos livres do tecido adiposo para geração de energia; 2) aumenta a capacidade de oxidação de gordura e 3) aumenta o gasto energético.
Resumo:
Calculating the estimated resting energy expenditure (REE) in severely obese patients is useful, but there is controversy concerning the effectiveness of available prediction equations (PE) using body weight (BW). We evaluated the efficacy of REE equations against indirect calorimetry (IC) in severely obese subjects and aimed to develop a new equation based on body composition compartments. One hundred and twenty severely obese patients had their REE measured (MREE) by IC and compared to the most commonly used PE (Harris-Benedict (HB), Ireton-Jones, Owen, and Mifflin St. Jeor). In a random sample (n = 60), a new REE equation based on fat-free mass (FFM) was developed and validated. All PE studied failed to estimate REE in severe obesity (low concordance correlation coefficient (CCC) and limits of agreement of nearly 50% of the sample +/- 10% of MREE). The HB equation using actual BW exhibited good results for all samples when compared to IC (2,117 +/- 518 kcal/day by HB vs. 2,139 +/- 423 kcal/day by MREE, P > 0.01); these results were blunted when patients were separated by gender (2,771 vs. 2,586 kcal/day, P < 0.001 in males and 1,825 vs. 1,939 kcal/day, P < 0.001 in females). A new resting energy expenditure equation prediction was developed using FFM, Horie-Waitzberg, & Gonzalez, expressed as 560.43 + (5.39 x BW) + (14.14 x FFM). The new resting energy expenditure equation prediction, which uses FFM and BW, demonstrates higher accuracy, precision, CCC, and limits of agreement than the standard PE in patients when compared to MREE (2,129 +/- 45 kcal/day vs. 2,139 +/- 423 kcal/day, respectively, P = 0.1). The new equation developed to estimate REE, which takes into account both FFM and BW, provides better results than currently available equations.
Resumo:
Objectives The methods currently available for the measurement of energy expenditure in patients, such as indirect calorimetry and double-labelled water, are expensive and are limited in Brazil to research projects. Thus, equations for the prediction of resting metabolic rate appear to be a viable alternative for clinical practice. However, there are no specific equations for the Brazilian population and few studies have been conducted on Brazilian women in the climacteric period using existing and commonly applied equations. On this basis, the objective of the present study was to investigate the concordance between the predictive equations most frequently used and indirect calorimetry for the measurement of resting metabolic rate. Methods We calculated the St. Laurent concordance correlation coefficient between the equations and resting metabolic rate calculated by indirect calorimetry in 46 climacteric women. Results The equation showing the best concordance was that of the FAO/WHO/UNU formula (0.63), which proved to be better than the Harris & Benedict equation (0.55) for the sample studied. Conclusions On the basis of the results of the present study, we conclude that the FAO/WHO/UNU formula can be used to predict better the resting metabolic rate of climacteric women. Further studies using more homogeneous and larger samples are needed to permit the use of the FAO/WHO/UNU formula for this population group with greater accuracy.
Resumo:
Prolonged total food deprivation in non-obese adults is rare, and few studies have documented body composition changes in this setting. In a group of eight hunger strikers who refused alimentation for 43 days, water and energy compartments were estimated, aiming to assess the impact of progressive starvation. Measurements included body mass index (BMI), triceps skinfold (TSF), arm muscle circumference (AMC), and bioimpedance (BIA) determinations of water, fat, lean body mass (LBM), and total resistance. Indirect calorimetry was also performed in one occasion. The age of the group was 43.3±6.2 years (seven males, one female). Only water, intermittent vitamins and electrolytes were ingested, and average weight loss reached 17.9%. On the last two days of the fast (43rd-44th day) rapid intravenous fluid, electrolyte, and vitamin replenishment were provided before proceeding with realimentation. Body fat decreased approximately 60% (BIA and TSF), whereas BMI reduced only 18%. Initial fat was estimated by BIA as 52.2±5.4% of body weight, and even on the 43rd day it was still measured as 19.7±3.8% of weight. TSF findings were much lower and commensurate with other anthropometric results. Water was comparatively low with high total resistance, and these findings rapidly reversed upon the intravenous rapid hydration. At the end of the starvation period, BMI (21.5±2.6 kg/m²) and most anthropometric determinations were still acceptable, suggesting efficient energy and muscle conservation. Conclusions: 1) All compartments diminished during fasting, but body fat was by far the most affected; 2) Total water was low and total body resistance comparatively elevated, but these findings rapidly reversed upon rehydration; 3) Exaggerated fat percentage estimates from BIA tests and simultaneous increase in lean body mass estimates suggested that this method was inappropriate for assessing energy compartments in the studied population; 4) Patients were not morphologically malnourished after 43 days of fasting; however, the prognostic impact of other impairments was not considered in this analysis.
Resumo:
RESUMO:Contexto: A avaliação do estado de nutrição do doente com indicação para transplante hepático (TH) deve ser abrangente, considerando o amplo espetro de situações clínicas e metabólicas. As alterações metabólicas relacionadas com a doença hepática podem limitar a aplicação de métodos de avaliação nutricional, subestimando a desnutrição. Após o TH, é expectável a reversão dos distúrbios metabólicos da doença hepática, pela melhoria da função do fígado. No entanto, algumas complicações metabólicas podem surgir após o TH, relacionadas com a má-nutrição, a desnervação hepática e o uso prolongado de imunossupressão, comprometendo os resultados clínicos a longo-prazo. A medição longitudinal e confiável do metabolismo energético e dos compartimentos corporais após o TH, avaliada em conjunto com fatores influentes no estado de nutrição, pode identificar precocemente situações de risco e otimizar e individualizar estratégias clínicas e nutricionais com vantagens no prognóstico. Objetivo: Avaliar longitudinalmente, a curto prazo, o estado de nutrição após o TH em doentes com insuficiência hepática por doença crónica e identificar os fatores, para além da cirurgia, que determinam diferentes evoluções do metabolismo energético e da composição corporal. Métodos: Foi estudada uma coorte de indivíduos com indicação para TH por doença hepática crónica, admitidos consecutivamente para TH ortotópico eletivo, durante 2 anos. Foram programados 3 momentos de avaliação: na última consulta pré-TH (T0), logo que adquirida autonomia respiratória e funcional após o TH (T1) e um mês após o TH (T2). Nesses momentos, foram medidos no mesmo dia: o suprimento nutricional por recordatório das últimas 24 horas, o estado de nutrição por Avaliação Subjetiva Global (ASG), o gasto energético em repouso (GER) por calorimetria indireta, a antropometria, a composição corporal por bioimpedância elétrica tetrapolar multifrequências e a força muscular por dinamometria de preensão palmar. O índice de massa magra (IMM) e a massa celular corporal (MCC) foram usados como indicadores do músculo esquelético e a percentagem de massa gorda (%MG) e o índice de massa gorda (IMG) como indicadores de adiposidade. O GER foi comparado com o estimado pelas fórmulas de Harris-Benedict para classificação do estado metabólico em:hipermetabolismo (GER medido >120% do GER estimado), normometabolismo (GER medido entre 80 e 120% do GER estimado) e hipometabolismo (GER medido <80% do GER estimado). Foi utilizada análise multivariável: por regressão logística, para identificar variáveis associadas à possibilidade (odds ratio – OR) de pertencer a cada grupo metabólico pré-TH; por regressão linear múltipla, para identificar variáveis associadas à variação dos compartimentos corporais no período pós-TH; e por modelos de efeitos mistos generalizados, para identificar variáveis associadas à evolução do GER e dos compartimentos corporais entre o período pré- e pós-TH. Resultados: Foram incluídos 56 indivíduos com idade, média (DP), 53,7 (8,5) anos, 87,5% do sexo masculino, 23,2% com doença hepática crónica de etiologia etanólica. Após o TH, em 60,7% indivíduos foi administrado regime imunossupressor baseado no tacrolimus. Os indivíduos foram avaliados [mediana (AIQ)] 90,5 (P25: 44,2; P75: 134,5) dias antes do TH (T0), 9,0 (P25: 7,0; P75: 12,0) dias após o TH (T1) e 36,0 (P25: 31,0; P75: 43,0) dias após o TH (T2). Após o TH houve melhoria significativa do estado de nutrição, com diminuição da prevalência de desnutrição classificada pela ASG (37,5% em T0, 16,1% em T2, p<0,001). Antes do TH, 41,1% dos indivíduos eram normometabólicos, 37,5% hipometabólicos e 21,4% hipermetabólicos. A possibilidade de pertencer a cada grupo metabólico pré-TH associou-se à: idade (OR=0,899, p=0,010) e desnutrição pela ASG (OR=5,038, p=0,015) para o grupo normometabólico; e índice de massa magra (IMM, OR=1,264, p=0,049) e etiologia viral da doença hepática (OR=8,297, p=0,019) para o grupo hipermetabólico. Não se obteve modelo múltiplo para o grupo de hipometabólico pré-TH, mas foram identificadas associações univariáveis com a história de toxicodependência (OR=0,282, p=0,047) e com a sarcopénia pré- TH (OR=8,000, p=0,040). Após o TH, houve normalização significativa e progressiva do estado metabólico, indicada pelo aumento da prevalência de normometabolismo (41,1% em T0, 57,1% em T2, p=0,040). Foram identificados diferentes perfis de evolução do GER após o TH, estratificado pelo estado metabólico pré-TH: no grupo hipometabólico pré-TH, o GER (Kcal) aumentou significativa e progressivamente (1030,6 em T0; 1436,1 em T1, p=0,001; 1659,2 em T2, p<0,001); no grupo hipermetabólico pré-TH o GER diminuiu significativa e progressivamente (2097,1 em T0; 1662,5 em T1, p=0,024; 1493,0 em T2, p<0.001); no grupo normometabólico não houve variações significativas. Os perfis de evolução do GER associaram-se com: peso corporal (β=9,6, p<0,001) e suprimento energético (β=13,6, p=0,005) na amostra total; com peso corporal (β=7,1, p=0,018) e contributo energético dos lípidos (β=18,9, p=0,003) no grupo hipometabólico pré-TH; e com peso corporal (β=14,1, p<0,001) e desnutrição pela ASG (β=-171,0, p=0,007) no grupo normometabólico pré-TH.Houve redução transitória dos compartimentos corporais entre T0 e T1, mas a maioria destes recuperou para valores semelhantes aos pré-TH. As exceções foram a água extracelular, que diminuiu entre T0 e T2 (média 18,2 L e 17,8 L, p=0,042), a massa gorda (média 25,1 Kg e 21,7 Kg, p<0,001) e o IMG (média 10,6 Kg.m-2 e 9,3 Kg.m-2, p<0,001) que diminuíram entre T1 e T2. Relativamente à evolução dos indicadores de músculo esquelético e adiposidade ao longo do estudo: a evolução do IMM associou-se com força de preensão palmar (β=0,06, p<0,001), creatininémia (β=2,28, p<0,001) e número total de fármacos administrados (β=-0,21, p<0,001); a evolução da MCC associou-se com força de preensão palmar (β=0,16, p<0,001), creatininémia (β=4,17, p=0,008) e número total de fármacos administrados (β=-0,46, p<0,001); a evolução da %MG associou-se com força de preensão palmar (β=-0,11, p=0,028), história de toxicodependência (β=-5,75, p=0,024), creatininémia (β=-5,91, p=0,004) e suprimento proteico (β=-0,06, p=0,001); a evolução do IMG associou-se com história de toxicodependência (β=- 2,64, p=0,019), creatininémia (β=-2,86, p<0,001) e suprimento proteico (β=-0,02, p<0,001). A variação relativa (%Δ) desses compartimentos corporais entre T1 e T2 indicou o impacto da terapêutica imunossupressora na composição corporal: o regime baseado na ciclosporina associou-se positivamente com a %Δ do IMM (β=23,76, p<0,001) e %Δ da MCC (β=26,58, p<0,001) e negativamente com a %Δ MG (β=-25,64, p<0,001) e %Δ do IMG (β=-25,62, p<0,001), relativamente ao regime baseado no tacrolimus. Os esteróides não influenciaram a evolução do GER nem com a dos compartimentos corporais. Conclusões: O estado de nutrição, avaliado por ASG, melhorou significativamente após o TH, traduzida pela diminuição da prevalência de desnutrição. O normometabolismo pré-TH foi prevalente e associou-se à menor idade e à desnutrição pré- TH. O hipometabolismo pré-TH associou-se à história de toxicodependência e à sarcopénia pré-TH. O hipermetabolismo pré-TH associou-se ao maior IMM e à etiologia viral da doença hepática. Após o TH, houve normalização progressiva do estado metabólico. Foram identificados três perfis de evolução do GER, associando-se com: peso corporal e suprimento energético na amostra total; peso corporal e contributo energético dos lípidos no grupo hipometabólico pré- TH; e peso corporal e desnutrição pela ASG no grupo normometabólico pré-TH. Foram identificados diferentes perfis de evolução da composição corporal após TH. A evolução do músculo esquelético associou-se positivamente com a força de preensão palmar e a creatininémia e negativamente com o número total de fármacos administrados. A evolução da adiposidade (%MG e IMG) associou-se inversamente com a história de toxicodependência, a creatininémia e o suprimento proteico; adicionalmente, a %MG associou-se inversamente com a força de preensão palmar. O regime baseado na ciclosporina associou-se independentemente com diminuição da adiposidade e aumento do músculo esquelético, comparativamente ao regime baseado no tacrolimus.---------------------------ABSTRACT:Background: The assessment of nutritional status in patients undergoing liver transplantation (LTx) should be comprehensive, accounting for the wide spectrum of the clinical and metabolic conditions. The metabolic disturbances related to liver disease may limit the precision and accuracy of traditional nutritional assessment methods underestimating the undernourishment. After LTx, it is expected that many metabolic derangements improve with the recovery of liver function. However, some metabolic complications arising after LTx, related to nutritional status, hepatic denervation, and prolonged immunosuppression, may compromise the longterm outcome. A reliable longitudinal assessment of both energy metabolism and body compartments after LTx, combined with assessments of other factors potentially affecting the nutritional status, may enable a better interpretation on the relationship between the metabolic and the nutritional status. These reliable assessments may precociously identify nutritional risk conditions and optimize and customize clinical and nutritional strategies improving the prognosis. Objective: To assess longitudinally the nutritional status shortly after orthotopic LTx in patients with chronic liver disease, and identify factors, beyond surgery, determining different energy metabolism and body composition profiles.Methods: A cohort of consecutive patients who underwent LTx due to chronic liver disease was studied within a period of two years. The assessments were performed in three occasions: at the last visit before LTx (T0), after surgery as soon as respiratory and functional autonomy was established (T1), and approximately one month after surgery (T2). On each occasion all assessments were performed on the same day, and included: the dietary assessment by 24- hour dietary recall, nutritional status by the Subjective Global Assessment (SGA), the resting energy expenditure (REE) by indirect calorimetry, anthropometry, body composition by multifrequency bioelectrical impedance analysis, and muscle strength by handgrip strength. Both the lean mass index (LMI) and body cell mass (BCM) were used as surrogates of skeletal muscle, and both the percentage of fat mass (%FM) and fat mass index (FMI) of adiposity. The REE was predicted according to the Harris and Benedict equation. Hypermetabolism was defined as a measured REE more than 120% of the predicted value; normometabolism as a measured REE within 80-120% of the predicted value; and hypometabolism as a measured REE less than 80% of the predicted value. Multiple regression analysis was used: by logistic regression to identify variables associated with odds of belong each pre-LTx metabolic groups; by linear multiple regression analysis to identify variables associated with body compartments relative variations (%Δ) in the post-LTx period; and by mixed effects models to identify variables associated with the REE and body compartments profiles pre- and post-LTx. Results: Fifty six patients with a mean (SD) of 53.7 (8.5) years of age were included, 87.5% were men and 23.2% with alcoholic liver disease. After LTx 60.7% individuals were assigned to tacrolimus-based immunosuppressive regimen. The patients were assessed at a median time (inter-quartil range) of 90.5 (P25 44.2; P75 134.5) days before LTx (T0), at a median time of 9.0 (P25 7.0; P75 12.0) (T1) and 36 (P25 31.0; P75 43.0) (T2) days after LTx. After LTx the nutritional status significantly improved: the SGA-undernourishment decreased from 37.5% (T0) to 16.1% (T2) (p<0.001). Before LTx, 41.1% patients were normometabolic, 37.5% hypometabolic, and 21.4% hypermetabolic. The predictors of each pre-LTx metabolic group were: age (OR=0.899, p=0.010) and SGA-undernourishment (OR=5.038, p=0.015) for the normometabolic group; and LMI (OR=1.264, p=0.049) and viral etiology of liver disease (OR=8.297, p=0.019) for the hypermetabolic group. No multiple model was found for the pre-LTx hypometabolic group, but univariate association was found with history of drug addiction (OR=0.282, p=0.047) and pre- LTx sarcopenia (OR=8.000, p=0.040). After LTx a significant normalization of the metabolic status occurred, indicated by the increase in the prevalence of normometabolic patients (from T0: 41.1% to T2: 57.1%, p=0.040). Different REE profiles were found with REE stratified by preoperative metabolic status: in the hypometabolic group a significant progressive increase in mean REE (Kcal) was observed (T0: 1030.6; T1: 1436.1, p=0.001; T2: 1659.2, p<0.001); in the hypermetabolic group, a significant progressive decrease in mean REE (Kcal) was observed (T0: 2097.1; T1: 1662.5, p=0.024; T2: 1493.0, p<0.001); and in the normometabolic group, no significant differences were found. The REE profiles were associated with: body weight (β- estimate=9.6, p<0.001) and energy intake (β-estimate=13.6, p=0.005) in the whole sample; with body weight (β-estimate=7.1, p=0.018) and %TEV from lipids (β-estimate=18.9, p=0.003) in the hypometabolic group; and with body weight (β-estimate=14.1, p<0.001), and SGAundernourishment (β-estimate=-171, p=0.007) in the normometabolic group. A transient decrease in most body compartments occurred from T0 to T1, with subsequent catch-up to similar preoperative values. Exceptions were the extracellular water, decreasing from T0 to T2 (mean 18.2 L to 17.8 L, p=0.042), the fat mass (mean 25.1 Kg to 21.7 Kg, p<0.001) and FMI (mean 10.6 Kg.m-2 to 9.3 Kg.m-2, p<0.001), decreasing from T1 to T2. Significant predictors of skeletal muscle and adiposity profiles were found: LMI evolution was associated with handgrip strength (β-estimate=0.06, p<0.001), serum creatinine (β- estimate=2.28, p<0.001) and number of medications (β-estimate=-0.21, p<0.001); BCM evolution was associated with handgrip strength (β-estimate=0.16, p<0.001), serum creatinine (β-estimate=4.17, p<0.001) and number of medications (β-estimate=-0.46, p<0.001); the %FM evolution was associated with handgrip strength (β-estimate=-0.11, p=0.028), history of drug addiction (β-estimate=-5.75, p=0.024), serum creatinine (β-estimate=-5.91, p=0.004) and protein intake (β-estimate=-0.06, p=0.001); and FMI evolution was associated with history of drug addiction (β-estimate=-2.64, p=0.019), serum creatinine (β-estimate=-2.86, p<0.001) and protein intake (β-estimate=-0.02, p<0.001). The %Δ of the aforementioned body compartments from T1 to T2 indicated the influence of immunosuppressive agents on body composition: the cyclosporine-based regimen, compared with tacrolimus-based regimen, was positively associated with %Δ LMI (β-estimate=23.76, p<0.001) and %Δ BCM (β- estimate=26.58, p<0.001), and inversely associated with %Δ FM (β-estimate=-25.64, p<0.001) and %Δ FMI (β-estimate=-25.62, p<0.001). No significant changes in REE or body composition were observed associated with dose or duration of steroid therapy. Conclusions: The SGA-assessed nutritional status improved shortly after LTx, with significant decrease in prevalence undernourished individuals. XXI Preoperative normometabolism was prevalent and was associated with younger age and SGAundernourishment before LTx. Preoperative hypometabolism was associated with history of drug addiction and pre-LTx sarcopenia. Preoperative hypermetabolism was associated with higher LMI and viral etiology of liver disease. A significant normalization of the metabolic status was observed after LTx. The REE profiles were positively predicted by body weight and energy intake in the whole sample, by body weight and percentage of energy intake from lipids in the preoperative hypometabolic patients, and by body weight and SGA–undernourishment in the preoperative normometabolic patients. Different body composition profiles were found after LTx. Skeletal muscle profile was positively associated with handgrip strength and serum creatinine, and inversely with the number of medications. The adiposity profile was inversely associated with history of drug addiction, serum creatinine and protein intake. Additionally, the %FM evolution was inversely associated with handgrip strength. The cyclosporine-based regimen, compared with tacrolimus-based regimen, was independently associated with skeletal muscle increase and adiposity decrease.
Resumo:
Body composition, resting energy expenditure (REE), and whole body protein metabolism were studied in 26 young and 28 elderly Gambian men matched for body mass index during the dry season in a rural village in The Gambia. REE was measured by indirect calorimetry (hood system) in the fasting state and after five successive meals. Rates of whole body nitrogen flux, protein synthesis, and protein breakdown were determined in the fed state from the level of isotopic enrichment of urinary ammonia over a period of 12 h after a single oral dose of [15N]glycine. Expressed in absolute value, REE was significantly lower in the elderly compared with the young group (3.21 +/- 0.07 vs. 4.04 +/- 0.07 kJ/min, P < 0.001) and when adjusted to body weight (3.29 +/- 0.05 vs. 3.96 +/- 0.05 kJ/min, P < 0.0001) and fat-free mass (FFM; 3.38 +/- 0.01 vs. 3.87 +/- 0.01 kJ/min, P < 0.0001). The rate of protein synthesis averaged 207 +/- 13 g protein/day in the elderly and 230 +/- 13 g protein/day in the young group, whereas protein breakdown averaged 184 +/- 13 g protein/day in the elderly and 203 +/- 13 g protein/day in the young group (nonsignificant). When values were adjusted for body weight or FFM, they did not reveal any difference between the two groups. It is concluded that the reduced REE adjusted for body composition observed in elderly Gambian men is not explained by a decrease in protein turnover.
Resumo:
The metabolic and respiratory effects of intravenous 0.5 M sodium acetate (at a rate of 2.5 mmol/min during 120 min) were studied in nine normal human subjects. O2 consumption (VO2) and CO2 production (VCO2) were measured continuously by open-circuit indirect calorimetry. VO2 increased from 251 +/- 9 to 281 +/- 9 ml/min (P < 0.001), energy expenditure increased from 4.95 +/- 0.17 kJ/min baseline to 5.58 +/- 0.16 kJ/min (P < 0.001), and VCO2 decreased nonsignificantly (211 +/- 7 ml/min vs. 202 +/- 7 ml/min, NS). The extrapulmonary CO2 loss (i.e., bicarbonate generation and excretion) was estimated at 48 +/- 5 ml/min. This observation is consistent with 1 mol of bicarbonate generated from 1 mol of acetate metabolized. Alveolar ventilation decreased from 3.5 +/- 0.2 l/min basal to 3.1 +/- 0.2 l/min (P < 0.001). The minute ventilation (VE) to VO2 ratio decreased from 22.9 +/- 1.3 to 17.6 +/- 0.9 l/l (P < 0.005), arterial PO2 decreased from 93.2 +/- 1.9 to 78.7 +/- 1.6 mmHg (P < 0.0001), arterial PCO2 increased from 39.2 +/- 0.7 to 42.1 +/- 1.1 mmHg (P < 0.0001), pH from 7.40 +/- 0.005 to 7.50 +/- 0.007 (P < 0.005), and arterial bicarbonate concentration from 24.2 +/- 0.7 to 32.9 +/- 1.1 (P < 0.0001). These observations indicate that sodium acetate infusion results in substantial extrapulmonary CO2 loss, which leads to a relative decrease of total and alveolar ventilation.
Resumo:
BACKGROUND & AIMS: Since the publications of the ESPEN guidelines on enteral and parenteral nutrition in ICU, numerous studies have added information to assist the nutritional management of critically ill patients regarding the recognition of the right population to feed, the energy-protein targeting, the route and the timing to start. METHODS: We reviewed and discussed the literature related to nutrition in the ICU from 2006 until October 2013. RESULTS: To identify safe, minimal and maximal amounts for the different nutrients and at the different stages of the acute illness is necessary. These amounts might be specific for different phases in the time course of the patient's illness. The best approach is to target the energy goal defined by indirect calorimetry. High protein intake (1.5 g/kg/d) is recommended during the early phase of the ICU stay, regardless of the simultaneous calorie intake. This recommendation can reduce catabolism. Later on, high protein intake remains recommended, likely combined with a sufficient amount of energy to avoid proteolysis. CONCLUSIONS: Pragmatic recommendations are proposed to practically optimize nutritional therapy based on recent publications. However, on some issues, there is insufficient evidence to make expert recommendations.
Resumo:
To determine the mechanisms that prevent an increase in gluconeogenesis from increasing hepatic glucose output, six healthy women were infused with [1-13C]fructose (22 mumol.kg-1.min-1), somatostatin, insulin, and glucagon. In control experiment, non-13C-enriched fructose was infused at the same rate without somatostatin, and [U-13C]glucose was infused to measure specifically plasma glucose oxidation. Endogenous glucose production (EGP, [6,6-2H]glucose), net carbohydrate oxidation (CHOox, indirect calorimetry), and fructose oxidation (13CO2) were measured. EGP rate did not increase after fructose infusion with (13.1 +/- 1.2 vs. 12.9 +/- 0.3 mumol.kg-1.min-1) and without (10.3 +/- 0.5 vs. 9.7 +/- 0.5 mumol.kg-1.min-1) somatostatin, despite the fact that gluconeogenesis increased. Nonoxidative fructose disposal, corresponding mainly to glycogen synthesis, was threefold net glycogen deposition, the latter calculated as fructose infusion minus CHOox (14.8 +/- 1.1 and 4.3 +/- 2.0 mumol.kg-1.min-1). It is concluded that 1) the mechanism by which EGP remains constant when gluconeogenesis from fructose increases is independent of changes in insulin and 2) simultaneous breakdown and synthesis of glycogen occurred during fructose infusion.
Resumo:
BACKGROUND & AIMS: Nutrition therapy is a cornerstone of burn care from the early resuscitation phase until the end of rehabilitation. While several aspects of nutrition therapy are similar in major burns and other critical care conditions, the patho-physiology of burn injury with its major endocrine, inflammatory, metabolic and immune alterations requires some specific nutritional interventions. The present text developed by the French speaking societies, is updated to provide evidenced-based recommendations for clinical practice. METHODS: A group of burn specialists used the GRADE methodology (Grade of Recommendation, Assessment, Development and Evaluation) to evaluate human burn clinical trials between 1979 and 2011. The resulting recommendations, strong suggestions or suggestions were then rated by the non-burn specialized experts according to their agreement (strong, moderate or weak). RESULTS: Eight major recommendations were made. Strong recommendations were made regarding, 1) early enteral feeding, 2) the elevated protein requirements (1.5-2 g/kg in adults, 3 g/kg in children), 3) the limitation of glucose delivery to a maximum of 55% of energy and 5 mg/kg/h associated with moderate blood glucose (target ≤ 8 mmol/l) control by means of continuous infusion, 4) to associated trace element and vitamin substitution early on, and 5) to use non-nutritional strategies to attenuate hypermetabolism by pharmacological (propranolol, oxandrolone) and physical tools (early surgery and thermo-neutral room) during the first weeks after injury. Suggestion were made in absence of indirect calorimetry, to use of the Toronto equation (Schoffield in children) for energy requirement determination (risk of overfeeding), and to maintain fat administration ≤ 30% of total energy delivery. CONCLUSION: The nutritional therapy in major burns has evidence-based specificities that contribute to improve clinical outcome.
Resumo:
The oxidative and nonoxidative glucose metabolism represent the two major mechanisms of the utilization of a glucose load. Eight normal subjects were administered oral loads of 50, 100 and 150 g glucose and gas exchange measurements were performed for eight hours by means of computerized continuous indirect calorimetry. The glycemic peaks were almost identical with all three doses with a rise to between 141 and 147 mg/dl at 60 min. The fall back to basal level was reached later with the high than with the low glucose doses. The glucose oxidation rate rose to values between 223 and 253 mg/min after the three glucose doses, but while falling immediately after the peak at 120 min following the 50 g load, the glucose oxidation rate remained at its maximum rate until 210 min for the 100 g glucose load and plateaued up to 270 min for the 150 g glucose dose. The oxidation rates then fell gradually to reach basal levels at 270, 330 and 420 min according to the increasing size of the load. Altogether 55 +/- 3 g glucose were oxidized during the 8 hours following the 50 g glucose load, 75 +/- 3 g after the 100 g load and 80 +/- 5 g after the 150 g load. The nonoxidative glucose disposal, which corresponds essentially to glucose storage, varied according to the size of the glucose load, with uptakes of 20 +/- 1, 60 +/- 1 and 110 +/- 1 g glucose 180 min after the 50, 100 and 150 g glucose loads respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The increase in resting energy expenditure (REE) reported in patients with cystic fibrosis (CF) does not necessarily imply an increase in total energy expenditure (TEE). In this study REE was assessed with open-circuit indirect calorimetry, and free-living 24-hour TEE with the heart rate method. Thirteen patients with CF, aged 8 to 24 years, with adequate nutritional status and moderately decreased pulmonary function, were studied. They were compared with 13 healthy control subjects matched for gender, age, height, and nutritional status. Resting energy expenditure was higher in patients with CF (1512 +/- 88 kcal/day) than in control subjects (1339 +/- 76 kcal/day; p less than 0.01), whereas free-living 24-hour TEE (2345 +/- 127 kcal/day and 2358 +/- 256 kcal/day, respectively) and net mechanical work efficiency of walking on a treadmill (20.4 +/- 0.7% and 19.8 +/- 0.6%, respectively) were similar. Respiratory quotient was higher in patients with CF than in control subjects at rest (0.834 +/- 0.009 vs 0.797 +/- 0.008; p less than 0.05), and tended to remain so during physical exercise, indicating a higher contribution of carbohydrate oxidation to energy expenditure. We conclude that in free living conditions, patients with CF can compensate for their increase in REE by a reduction in spontaneous physical activities or other yet undefined mechanisms.
Resumo:
The aim of the present study was to determine whether an increase in resting energy expenditure (REE) contributes to the impaired nutritional status of Gambian children infected by a low level of infection with pathogenic helminths. The REE of 24 children infected with hookworm, Ascaris, Strongyloides, or Trichuris (mean +/- SEM age = 11.9 +/- 0.1 years) and eight controls without infection (mean +/- SEM age = 11.8 +/- 0.1 years) were measured by indirect calorimetry with a hood system (test A). This measurement was repeated after treatment with 400 mg of albendazole (patients) or a placebo (controls) (test B). When normalized for fat free mass, REE in test A was not different in the patients (177 +/- 2 kJ/kg x day) and in the controls (164 +/- 7 kJ/kg x day); furthermore, REE did not change significantly after treatment in the patients (173 +/- 3 kJ/kg x day) or in the controls (160 +/- 8 kJ/kg x day). There was no significant difference in the respiratory quotient between patients and controls, nor between tests A and B. It is concluded that a low level of helminth infection does not affect significantly the energy metabolism of Gambian children.