993 resultados para sub-seasonal prediction
Resumo:
A finite element model was used to simulate timberbeams with defects and predict their maximum load in bending. Taking into account the elastoplastic constitutive law of timber, the prediction of fracture load gives information about the mechanisms of timber failure, particularly with regard to the influence of knots, and their local graindeviation, on the fracture. A finite element model was constructed using the ANSYS element Plane42 in a plane stress 2D-analysis, which equates thickness to the width of the section to create a mesh which is as uniform as possible. Three sub-models reproduced the bending test according to UNE EN 408: i) timber with holes caused by knots; ii) timber with adherent knots which have structural continuity with the rest of the beam material; iii) timber with knots but with only partial contact between knot and beam which was artificially simulated by means of contact springs between the two materials. The model was validated using ten 45 × 145 × 3000 mm beams of Pinus sylvestris L. which presented knots and graindeviation. The fracture stress data obtained was compared with the results of numerical simulations, resulting in an adjustment error less of than 9.7%
Resumo:
In this work, we propose the Seasonal Dynamic Factor Analysis (SeaDFA), an extension of Nonstationary Dynamic Factor Analysis, through which one can deal with dimensionality reduction in vectors of time series in such a way that both common and specific components are extracted. Furthermore, common factors are able to capture not only regular dynamics (stationary or not) but also seasonal ones, by means of the common factors following a multiplicative seasonal VARIMA(p, d, q) × (P, D, Q)s model. Additionally, a bootstrap procedure that does not need a backward representation of the model is proposed to be able to make inference for all the parameters in the model. A bootstrap scheme developed for forecasting includes uncertainty due to parameter estimation, allowing enhanced coverage of forecasting intervals. A challenging application is provided. The new proposed model and a bootstrap scheme are applied to an innovative subject in electricity markets: the computation of long-term point forecasts and prediction intervals of electricity prices. Several appendices with technical details, an illustrative example, and an additional table are available online as Supplementary Materials.
Resumo:
In the last few years there has been a heightened interest in data treatment and analysis with the aim of discovering hidden knowledge and eliciting relationships and patterns within this data. Data mining techniques (also known as Knowledge Discovery in Databases) have been applied over a wide range of fields such as marketing, investment, fraud detection, manufacturing, telecommunications and health. In this study, well-known data mining techniques such as artificial neural networks (ANN), genetic programming (GP), forward selection linear regression (LR) and k-means clustering techniques, are proposed to the health and sports community in order to aid with resistance training prescription. Appropriate resistance training prescription is effective for developing fitness, health and for enhancing general quality of life. Resistance exercise intensity is commonly prescribed as a percent of the one repetition maximum. 1RM, dynamic muscular strength, one repetition maximum or one execution maximum, is operationally defined as the heaviest load that can be moved over a specific range of motion, one time and with correct performance. The safety of the 1RM assessment has been questioned as such an enormous effort may lead to muscular injury. Prediction equations could help to tackle the problem of predicting the 1RM from submaximal loads, in order to avoid or at least, reduce the associated risks. We built different models from data on 30 men who performed up to 5 sets to exhaustion at different percentages of the 1RM in the bench press action, until reaching their actual 1RM. Also, a comparison of different existing prediction equations is carried out. The LR model seems to outperform the ANN and GP models for the 1RM prediction in the range between 1 and 10 repetitions. At 75% of the 1RM some subjects (n = 5) could perform 13 repetitions with proper technique in the bench press action, whilst other subjects (n = 20) performed statistically significant (p < 0:05) more repetitions at 70% than at 75% of their actual 1RM in the bench press action. Rate of perceived exertion (RPE) seems not to be a good predictor for 1RM when all the sets are performed until exhaustion, as no significant differences (p < 0:05) were found in the RPE at 75%, 80% and 90% of the 1RM. Also, years of experience and weekly hours of strength training are better correlated to 1RM (p < 0:05) than body weight. O'Connor et al. 1RM prediction equation seems to arise from the data gathered and seems to be the most accurate 1RM prediction equation from those proposed in literature and used in this study. Epley's 1RM prediction equation is reproduced by means of data simulation from 1RM literature equations. Finally, future lines of research are proposed related to the problem of the 1RM prediction by means of genetic algorithms, neural networks and clustering techniques. RESUMEN En los últimos años ha habido un creciente interés en el tratamiento y análisis de datos con el propósito de descubrir relaciones, patrones y conocimiento oculto en los mismos. Las técnicas de data mining (también llamadas de \Descubrimiento de conocimiento en bases de datos\) se han aplicado consistentemente a lo gran de un gran espectro de áreas como el marketing, inversiones, detección de fraude, producción industrial, telecomunicaciones y salud. En este estudio, técnicas bien conocidas de data mining como las redes neuronales artificiales (ANN), programación genética (GP), regresión lineal con selección hacia adelante (LR) y la técnica de clustering k-means, se proponen a la comunidad del deporte y la salud con el objetivo de ayudar con la prescripción del entrenamiento de fuerza. Una apropiada prescripción de entrenamiento de fuerza es efectiva no solo para mejorar el estado de forma general, sino para mejorar la salud e incrementar la calidad de vida. La intensidad en un ejercicio de fuerza se prescribe generalmente como un porcentaje de la repetición máxima. 1RM, fuerza muscular dinámica, una repetición máxima o una ejecución máxima, se define operacionalmente como la carga máxima que puede ser movida en un rango de movimiento específico, una vez y con una técnica correcta. La seguridad de las pruebas de 1RM ha sido cuestionada debido a que el gran esfuerzo requerido para llevarlas a cabo puede derivar en serias lesiones musculares. Las ecuaciones predictivas pueden ayudar a atajar el problema de la predicción de la 1RM con cargas sub-máximas y son empleadas con el propósito de eliminar o al menos, reducir los riesgos asociados. En este estudio, se construyeron distintos modelos a partir de los datos recogidos de 30 hombres que realizaron hasta 5 series al fallo en el ejercicio press de banca a distintos porcentajes de la 1RM, hasta llegar a su 1RM real. También se muestra una comparación de algunas de las distintas ecuaciones de predicción propuestas con anterioridad. El modelo LR parece superar a los modelos ANN y GP para la predicción de la 1RM entre 1 y 10 repeticiones. Al 75% de la 1RM algunos sujetos (n = 5) pudieron realizar 13 repeticiones con una técnica apropiada en el ejercicio press de banca, mientras que otros (n = 20) realizaron significativamente (p < 0:05) más repeticiones al 70% que al 75% de su 1RM en el press de banca. El ínndice de esfuerzo percibido (RPE) parece no ser un buen predictor del 1RM cuando todas las series se realizan al fallo, puesto que no existen diferencias signifiativas (p < 0:05) en el RPE al 75%, 80% y el 90% de la 1RM. Además, los años de experiencia y las horas semanales dedicadas al entrenamiento de fuerza están más correlacionadas con la 1RM (p < 0:05) que el peso corporal. La ecuación de O'Connor et al. parece surgir de los datos recogidos y parece ser la ecuación de predicción de 1RM más precisa de aquellas propuestas en la literatura y empleadas en este estudio. La ecuación de predicción de la 1RM de Epley es reproducida mediante simulación de datos a partir de algunas ecuaciones de predicción de la 1RM propuestas con anterioridad. Finalmente, se proponen futuras líneas de investigación relacionadas con el problema de la predicción de la 1RM mediante algoritmos genéticos, redes neuronales y técnicas de clustering.
Resumo:
No estudo das comunidades florestais, estabelecer a importância relativa dos fatores que definem a composição e a distribuição das espécies é um desafio. Em termos de gradientes ambientais o estudo das respostas das espécies arbóreas são essenciais para a compreensão dos processos ecológicos e decisões de conservação. Neste sentido, para contribuir com a elucidação dos processos ecológicos nas principais formações florestais do Estado de São Paulo (Floresta Ombrófila Densa de Terras Baixas, Floresta Ombrófila Densa Submontana, Floresta Estacional Semidecidual e Savana Florestada) este trabalho objetivou responder as seguintes questões: (I) a composição florística e a abundância das espécies arbóreas, em cada unidade fitogeográfica, variam conforme o gradiente edáfico e topográfico?; (II) características do solo e topografia podem influenciar na previsibilidade de ocorrência de espécies arbóreas de ampla distribuição em diferentes tipos vegetacionais? (III) existe relação entre o padrão de distribuição espacial de espécies arbóreas e os parâmetros do solo e topografia? O trabalho foi realizado em parcelas alocadas em unidades de conservação (UC) que apresentaram trechos representativos, em termos de conservação e tamanho, das quatro principais formações florestais presentes no Estado de São Paulo. Em cada UC foram contabilizados os indivíduos arbóreos (CAP ≥ 15 cm), topografia, dados de textura e atributos químicos dos solos em uma parcela de 10,24 ha, subdividida em 256 subparcelas. Análises de correspodência canônica foram aplicadas para estabelecer a correspondência entre a abundância das espécies e o gradiente ambiental (solo e topografia). O método TWINSPAN modificado foi aplicado ao diagrama de ordenação da CCA para avaliar a influência das variáveis ambientais (solo e topografia) na composição de espécies. Árvores de regressão \"ampliadas\" (BRT) foram ajustadas para a predição da ocorrência das espécies segundo as variáveis de solo e topografia. O índice de Getis-Ord (G) foi utilizado para determinar a autocorrelação espacial das variáveis ambientais utilizadas nos modelos de predição da ocorrência das espécies. Nas unidades fitogeográficas analisadas, a correspondência entre o gradiente ambiental (solo e topografia) e a abundância das espécies foi significativa, especialmente na Savana Florestada onde observou-se a maior relação. O solo e a topografia também se relacionaram com a semelhança na composição florística das subparcelas, com exceção da Floresta Estacional Semicidual (EEC). As principais variáveis de solo e topografia relacionadas a flora em cada UC foram: (1) Na Floresta Ombrófila Densa de Terras Baixas (PEIC) - teor de alumínio na camada profunda (Al (80-100 cm)) que pode refletir os teor de Al na superfície, acidez do solo (pH(H2O) (5-25 cm)) e altitude, que delimitou as áreas alagadas; (2) Na Floresta Ombrófila Densa Submontana (PECB) - altitude, fator que, devido ao relevo acidentado, influencia a temperatura e incidência de sol no sub-bosque; (3) Na Savana Florestada (EEA) - fertilidade, tolerância ao alumínio e acidez do solo. Nos modelos de predição BRT, as variáveis químicas dos solos foram mais importantes do que a textura, devido à pequena variação deste atributo no solo nas áreas amostradas. Dentre as variáveis químicas dos solos, a capacidade de troca catiônica foi utilizada para prever a ocorrência das espécies nas quatro formações florestais, sendo particularmente importante na camada mais profunda do solo da Floresta Ombrófila Densa de Terras Baixas (PEIC). Quanto à topografia, a altitude foi inserida na maioria dos modelos e apresentou diferentes influências sobre as áreas de estudo. De modo geral, para presença das espécies de ampla distribuição observou-se uma mesma tendência quando à associação com os atributos dos solos, porém com amplitudes dos descritores edáficos que variaram de acordo com a área de estudo. A ocorrência de Guapira opposita e Syagrus romanzoffiana, cujo padrão variou conforme a escala, foi explicada por variáveis com padrões espaciais agregados que somaram entre 30% e 50% de importância relativa no modelo BRT. A presença de A. anthelmia, cujo padrão também apresentou certo nível de agregação, foi associada apenas a uma variável com padrão agregado, a altitude (21%), que pode ter exercido grande influência na distribuição da espécie ao delimitar áreas alagadas. T. guianensis se associou a variáveis ambientais preditoras com padrão espacial agregado que somaram cerca de 70% de importância relativa, o que deve ter sido suficiente para estabelecer o padrão agregado em todas as escalas. No entanto, a influência dos fatores ambientais no padrão de distribuição da espécie não depende apenas do ótimo ambiental da espécie, mas um resultado da interação espécie-ambiente. Concluiu-se que: (I) características edáficas e topográficas explicaram uma pequena parcela da composição florística, em cada unidade fitogeográfica, embora a ocorrência de algumas espécies tenha se associado ao gradiente edáfico e topográfico; (II) a partir de características dos solos e da topografia foi possível prever a presença de espécies arbóreas, que apresentaram particularidades em relação a sua associação com o solo de cada fitofisionomia; (III) a partir de associações descritivas o solo e a topografia influenciam o padrão de distribuição espacial das espécies, na proporção em que contribuem para a presença das mesmas.
Resumo:
The Weddell Sea and the associated Filchner-Rønne Ice Shelf constitute key regions for global bottomwater production today. However, little is known about bottom-water production under different climate and icesheet conditions. Therefore, we studied core PS1795, which consists primarily of fine-grained siliciclastic varves that were deposited on contourite ridges in the southeastern Weddell Sea during the Last Glacial Maximum (LGM). We conducted high-resolution X-ray fluorescence (XRF) analysis and grain-size measurements with the RADIUS tool (Seelos and Sirocko, 2005, doi:10.1111/j.1365-3091.2005.00715.x) using thin sections to characterize the two seasonal components of the varves at sub-mm resolution to distinguish the seasonal components of the varves. Bright layers contain coarser grains that can mainly be identified as quartz in the medium-to-coarse silt grain size. They also contain higher amounts of Si, Zr, Ca, and Sr, as well as more ice-rafted debris (IRD). Dark layers, on the other hand, contain finer particles such as mica and clay minerals from the chlorite and illite groups. In addition, Fe, Ti, Rb, and K are elevated. Based on these findings as well as on previous analyses on neighbouring cores, we propose a model of enhanced thermohaline convection in front of a grounded ice sheet that is supported by seasonally variable coastal polynya activity during the LGM. Accordingly, katabatic (i.e. offshore blowing) winds removed sea ice from the ice edge, leading to coastal polynya formation. We suggest that glacial processes were similar to today with stronger katabatic winds and enhanced coastal polynya activity during the winter season. Under these conditions, lighter coarser-grained layers are likely glacial winter deposits, when brine rejection was increased, leading to enhanced bottom-water formation and increased sediment transport. Vice versa, darker finer-grained layers were then deposited during less windier season, mainly during summer, when coastal polynya activity was likely reduced.
Resumo:
A major trough ('Belgica Trough') eroded by a palaeo-ice stream crosses the continental shelf of the southern Bellingshausen Sea (West Antarctica) and is associated with a trough mouth fan ('Belgica TMF') on the adjacent continental slope. Previous marine geophysical and geological studies investigated the bathymetry and geomorphology of Belgica Trough and Belgica TMF, erosional and depositional processes associated with bedform formation, and the temporal and spatial changes in clay mineral provenance of subglacial and glaciomarine sediments. Here, we present multi-proxy data from sediment cores recovered from the shelf and uppermost slope in the southern Bellingshausen Sea and reconstruct the ice-sheet history since the last glacial maximum (LGM) in this poorly studied area of West Antarctica. We combined new data (physical properties, sedimentary structures, geochemical and grain-size data) with published data (shear strength, clay mineral assemblages) to refine a previous facies classification for the sediments. The multi-proxy approach allowed us to distinguish four main facies types and to assign them to the following depositional settings: 1) subglacial, 2) proximal grounding-line, 3) distal sub-ice shelf/subsea ice, and 4) seasonal open-marine. In the seasonal open-marine facies we found evidence for episodic current-induced winnowing of near-seabed sediments on the middle to outer shelf and at the uppermost slope during the late Holocene. In addition, we obtained data on excess 210Pb activity at three core sites and 44 AMS 14C dates from the acid-insoluble fraction of organic matter (AIO) and calcareous (micro-)fossils, respectively, at 12 sites. These chronological data enabled us to reconstruct, for the first time, the timing of the last advance and retreat of the West Antarctic Ice Sheet (WAIS) and the Antarctic Peninsula Ice Sheet (APIS) in the southern Bellingshausen Sea. We used the down-core variability in sediment provenance inferred from clay mineral changes to identify the most reliable AIO 14C ages for ice-sheet retreat. The palaeo-ice stream advanced through Belgica Trough after ~36.0 corrected 14C ka before present (B.P.). It retreated from the outer shelf at ~25.5 ka B.P., the middle shelf at ~19.8 ka B.P., the inner shelf in Eltanin Bay at ~12.3 ka B.P., and the inner shelf in Ronne Entrance at ~6.3 ka B.P.. The retreat of the WAIS and APIS occurred slowly and stepwise, and may still be in progress. This dynamical ice-sheet behaviour has to be taken into account for the interpretation of recent and the prediction of future mass-balance changes in the study area. The glacial history of the southern Bellingshausen Sea is unique when compared to other regions in West Antarctica, but some open questions regarding its chronology need to be addressed by future work.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Improvements in seasonal climate forecasts have potential economic implications for international agriculture. A stochastic, dynamic simulation model of the international wheat economy is developed to estimate the potential effects of seasonal climate forecasts for various countries' wheat production, exports and world trade. Previous studies have generally ignored the stochastic and dynamic aspects of the effects associated with the use of climate forecasts. This study shows the importance of these aspects. In particular with free trade, the use of seasonal forecasts results in increased producer surplus across all exporting countries. In fact, producers appear to capture a large share of the economic surplus created by using the forecasts. Further, the stochastic dimensions suggest that while the expected long-run benefits of seasonal forecasts are positive, considerable year-to-year variation in the distribution of benefits between producers and consumers should be expected. The possibility exists for an economic measure to increase or decrease over a 20-year horizon, depending on the particular sequence of years.
Resumo:
The treatment and hydraulic mechanisms in a septic tank-soil absorption system ( SAS) are highly influenced by the clogging layer or biomat zone which develops on bottom and lower sidewall surfaces within the trench. Flow rates through the biomat and sub-biomat zones are governed largely by the biomat hydraulic properties (resistance and hydraulic conductivity) and the unsaturated hydraulic conductivity of the underlying soil. One- and 2-dimensional models were used to investigate the relative importance of sidewall and vertical flow rates and pathways in SAS. Results of 1-dimensional modelling show that several orders of magnitude variation in saturated hydraulic conductivity (Ks) reduce to a 1 order of magnitude variation in long-term flow rates. To increase the reliability of prediction of septic trench hydrology, HYDRUS-2D was used to model 2-dimensional flow. In the permeable soils, under high trench loading, effluent preferentially flowed in the upper region of the trench where no resistant biomat was present (the exfiltration zone). By comparison, flow was more evenly partitioned between the biomat zones and the exfiltration zones of the low permeability soil. An increase in effluent infiltration corresponded with a greater availability of exfiltration zone, rather than a lower resistance of biomat. Results of modelling simulations demonstrated the important role that a permeable A horizon may play in limiting surface surcharge of effluent under high trench hydraulic loading.
PhosphoregDB: The tissue and sub-cellular distribution of mammalian protein kinases and phosphatases
Resumo:
This paper describes effluent flow dynamics within a septic absorption system and the prediction of flow through the biomat and sub-biomat zone. Using soil hydraulic properties in a one dimensional model we demonstrate how soil hydraulic properties interact with biomat resistances to determine long-term acceptance rate (LTAR). The LTAR is a key parameter used in the Australian and New Zealand Standard AS1547:2000 to calculate the area of trench required to ensure trenches are not overloaded. Results show that several orders of magnitude variation in saturated hydraulic conductivity (Ks) collapse to a one order of magnitude variation in LTAR. These results are calculated from a model using basic flow theory, allowing LTAR to be estimated for any combination of biomat resistance and soil hydraulic properties. To increase the reliability of prediction of septic trench hydrology, HYDRUS 2D was used to model two dimensional flow. For more permeable soils, the exfiltration zone above sidewall biomat growth is shown to be a key pathway for excess effluent flow.
Resumo:
This research investigates the contribution that Geographic Information Systems (GIS) can make to the land suitability process used to determine the effects of a climate change scenario. The research is intended to redress the severe under representation of Developing countries within the literature examining the impacts of climatic change upon crop productivity. The methodology adopts some of the Intergovernmental Panel on Climate Change (IPCC) estimates for regional climate variations, based upon General Circulation Model predictions (GCMs) and applies them to a baseline climate for Bangladesh. Utilising the United Nations Food & Agricultural Organisation's Agro-ecological Zones land suitability methodology and crop yield model, the effects of the scenario upon agricultural productivity on 14 crops are determined. A Geographic Information System (IDRISI) is adopted in order to facilitate the methodology, in conjunction with a specially designed spreadsheet, used to determine the yield and suitability rating for each crop. A simple optimisation routine using the GIS is incorporated to provide an indication of the 'maximum theoretical' yield available to the country, should the most calorifically significant crops be cultivated on each land unit both before and after the climate change scenario. This routine will provide an estimate of the theoretical population supporting capacity of the country, both now and in the future, to assist with planning strategies and research. The research evaluates the utility of this alternative GIS based methodology for the land evaluation process and determines the relative changes in crop yields that may result from changes in temperature, photosynthesis and flooding hazard frequency. In summary, the combination of a GIS and a spreadsheet was successful, the yield prediction model indicates that the application of the climate change scenario will have a deleterious effect upon the yields of the study crops. Any yield reductions will have severe implications for agricultural practices. The optimisation routine suggests that the 'theoretical maximum' population supporting capacity is well in excess of current and future population figures. If this agricultural potential could be realised however, it may provide some amelioration from the effects of climate change.
Resumo:
Modern injection-moulding machinery which produces several, pairs of plastic footwear at a time brought increased production planning problems to a factory. The demand for its footwear is seasonal but the company's manning policy keeps a fairly constant production level thus determining the aggregate stock. Production planning must therefore be done within the limitations of a specified total stock. The thesis proposes a new production planning system with four subsystems. These are sales forecasting, resource planning, and two levels of production scheduling: (a) aggregate decisions concerning the 'manufacturing group' (group of products) to be produced in each machine each week, and (b) detailed decisions concerning the products within a manufacturing group to be scheduled into each mould-place. The detailed scheduling is least dependent on improvements elsewhere so the sub-systems were tackled in reverse order. The thesis concentrates on the production scheduling sub-systems which will provide most. of the benefits. The aggregate scheduling solution depends principally on the aggregate stocks of each manufacturing group and their division into 'safety stocks' (to prevent shortages) and 'freestocks' (to permit batch production). The problem is too complex for exact solution but a good heuristic solution, which has yet to be implemented, is provided by minimising graphically immediate plus expected future costs. The detailed problem splits into determining the optimal safety stocks and batch quantities given the appropriate aggregate stocks. It.is found that the optimal safety stocks are proportional to the demand. The ideal batch quantities are based on a modified, formula for the Economic Batch Quantity and the product schedule is created week by week using a priority system which schedules to minimise expected future costs. This algorithm performs almost optimally. The detailed scheduling solution was implemented and achieved the target savings for the whole project in favourable circumstances. Future plans include full implementation.
Resumo:
We describe a novel and potentially important tool for candidate subunit vaccine selection through in silico reverse-vaccinology. A set of Bayesian networks able to make individual predictions for specific subcellular locations is implemented in three pipelines with different architectures: a parallel implementation with a confidence level-based decision engine and two serial implementations with a hierarchical decision structure, one initially rooted by prediction between membrane types and another rooted by soluble versus membrane prediction. The parallel pipeline outperformed the serial pipeline, but took twice as long to execute. The soluble-rooted serial pipeline outperformed the membrane-rooted predictor. Assessment using genomic test sets was more equivocal, as many more predictions are made by the parallel pipeline, yet the serial pipeline identifies 22 more of the 74 proteins of known location.
Resumo:
The extraction of climatic signals from time series of biogeochemical data is further complicated in estuarine regions because of the dynamic interaction of land, ocean, and atmosphere. We explored the behavior of potential global and regional climatic stressors to isolate specific shifts or trends, which could have a forcing role on the behavior of biogeochemical descriptors of water quality and phytoplankton biomass from Florida Bay, as an example of a sub-tropical estuary. We performed statistical analysis and subdivided the bay into six zones having unique biogeochemical characteristics. Significant shifts in the drivers were identified in all the chlorophyll a time series. Chlorophyll a concentrations closely follow global forcing and display a generalized declining trend on which seasonal oscillations are superimposed, and it is only interrupted by events of sudden increase triggered by storms which are followed by a relatively rapid return to pre-event conditions trailing again the long-term trend.