948 resultados para structural layout analysis
Resumo:
Acoustic emission (AE) is the phenomenon where high frequency stress waves are generated by rapid release of energy within a material by sources such as crack initiation or growth. AE technique involves recording these stress waves by means of sensors placed on the surface and subsequent analysis of the recorded signals to gather information such as the nature and location of the source. It is one of the several diagnostic techniques currently used for structural health monitoring (SHM) of civil infrastructure such as bridges. Some of its advantages include ability to provide continuous in-situ monitoring and high sensitivity to crack activity. But several challenges still exist. Due to high sampling rate required for data capture, large amount of data is generated during AE testing. This is further complicated by the presence of a number of spurious sources that can produce AE signals which can then mask desired signals. Hence, an effective data analysis strategy is needed to achieve source discrimination. This also becomes important for long term monitoring applications in order to avoid massive date overload. Analysis of frequency contents of recorded AE signals together with the use of pattern recognition algorithms are some of the advanced and promising data analysis approaches for source discrimination. This paper explores the use of various signal processing tools for analysis of experimental data, with an overall aim of finding an improved method for source identification and discrimination, with particular focus on monitoring of steel bridges.
Resumo:
DNA exists predominantly in a duplex form that is preserved via specific base pairing. This base pairing affords a considerable degree of protection against chemical or physical damage and preserves coding potential. However, there are many situations, e.g. during DNA damage and programmed cellular processes such as DNA replication and transcription, in which the DNA duplex is separated into two singlestranded DNA (ssDNA) strands. This ssDNA is vulnerable to attack by nucleases, binding by inappropriate proteins and chemical attack. It is very important to control the generation of ssDNA and protect it when it forms, and for this reason all cellular organisms and many viruses encode a ssDNA binding protein (SSB). All known SSBs use an oligosaccharide/oligonucleotide binding (OB)-fold domain for DNA binding. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating strand-exchange proteins and helicases, and mediation of protein–protein interactions. Recently two additional human SSBs have been identified that are more closely related to bacterial and archaeal SSBs. Prior to this it was believed that replication protein A, RPA, was the only human equivalent of bacterial SSB. RPA is thought to be required for most aspects of DNA metabolism including DNA replication, recombination and repair. This review will discuss in further detail the biological pathways in which human SSBs function.
Resumo:
Collagen fibrillation within articular cartilage (AC) plays a key role in joint osteoarthritis (OA) progression and, therefore, studying collagen synthesis changes could be an indicator for use in the assessment of OA. Various staining techniques have been developed and used to determine the collagen network transformation under microscopy. However, because collagen and proteoglycan coexist and have the same index of refraction, conventional methods for specific visualization of collagen tissue is difficult. This study aimed to develop an advanced staining technique to distinguish collagen from proteoglycan and to determine its evolution in relation to OA progression using optical and laser scanning confocal microscopy (LSCM). A number of AC samples were obtained from sheep joints, including both healthy and abnormal joints with OA grades 1 to 3. The samples were stained using two different trichrome methods and immunohistochemistry (IHC) to stain both colourimetrically and with fluorescence. Using optical microscopy and LSCM, the present authors demonstrated that the IHC technique stains collagens only, allowing the collagen network to be separated and directly investigated. Fluorescently-stained IHC samples were also subjected to LSCM to obtain three-dimensional images of the collagen fibres. Changes in the collagen fibres were then correlated with the grade of OA in tissue. This study is the first to successfully utilize the IHC staining technique in conjunction with laser scanning confocal microscopy. This is a valuable tool for assessing changes to articular cartilage in OA.
Resumo:
Food microstructure represents the way their elements arrangement and their interaction. Researchers in this field benefit from identifying new methods of examination of the microstructure and analysing the images. Experiments were undertaken to study micro-structural changes of food material during drying. Micro-structural images were obtained for potato samples of cubical shape at different moisture contents during drying using scanning electron microscopy. Physical parameters such as cell wall perimeter, and area were calculated using an image identification algorithm, based on edge detection and morphological operators. The algorithm was developed using Matlab.
Resumo:
This paper describes the formulation for the free vibration of joined conical-cylindrical shells with uniform thickness using the transfer of influence coefficient for identification of structural characteristics. These characteristics are importance for structural health monitoring to develop model. This method was developed based on successive transmission of dynamic influence coefficients, which were defined as the relationships between the displacement and the force vectors at arbitrary nodal circles of the system. The two edges of the shell having arbitrary boundary conditions are supported by several elastic springs with meridional/axial, circumferential, radial and rotational stiffness, respectively. The governing equations of vibration of a conical shell, including a cylindrical shell, are written as a coupled set of first order differential equations by using the transfer matrix of the shell. Once the transfer matrix of a single component has been determined, the entire structure matrix is obtained by the product of each component matrix and the joining matrix. The natural frequencies and the modes of vibration were calculated numerically for joined conical-cylindrical shells. The validity of the present method is demonstrated through simple numerical examples, and through comparison with the results of previous researchers.
Resumo:
Denaturation of tissues can provide a unique biological environment for regenerative medicine application only if minimal disruption of their microarchitecture is achieved during the decellularization process. The goal is to keep the structural integrity of such a construct as functional as the tissues from which they were derived. In this work, cartilage-on-bone laminates were decellularized through enzymatic, non-ionic and ionic protocols. This work investigated the effects of decellularization process on the microarchitecture of cartiligous extracellular matrix; determining the extent of how each process deteriorated the structural organization of the network. High resolution microscopy was used to capture cross-sectional images of samples prior to and after treatment. The variation of the microarchitecture was then analysed using a well defined fast Fourier image processing algorithm. Statistical analysis of the results revealed how significant the alternations among aforementioned protocols were (p < 0.05). Ranking the treatments by their effectiveness in disrupting the ECM integrity, they were ordered as: Trypsin> SDS> Triton X-100.
Resumo:
Structural health monitoring (SHM) refers to the procedure used to assess the condition of structures so that their performance can be monitored and any damage can be detected early. Early detection of damage and appropriate retrofitting will aid in preventing failure of the structure and save money spent on maintenance or replacement and ensure the structure operates safely and efficiently during its whole intended life. Though visual inspection and other techniques such as vibration based ones are available for SHM of structures such as bridges, the use of acoustic emission (AE) technique is an attractive option and is increasing in use. AE waves are high frequency stress waves generated by rapid release of energy from localised sources within a material, such as crack initiation and growth. AE technique involves recording these waves by means of sensors attached on the surface and then analysing the signals to extract information about the nature of the source. High sensitivity to crack growth, ability to locate source, passive nature (no need to supply energy from outside, but energy from damage source itself is utilised) and possibility to perform real time monitoring (detecting crack as it occurs or grows) are some of the attractive features of AE technique. In spite of these advantages, challenges still exist in using AE technique for monitoring applications, especially in the area of analysis of recorded AE data, as large volumes of data are usually generated during monitoring. The need for effective data analysis can be linked with three main aims of monitoring: (a) accurately locating the source of damage; (b) identifying and discriminating signals from different sources of acoustic emission and (c) quantifying the level of damage of AE source for severity assessment. In AE technique, the location of the emission source is usually calculated using the times of arrival and velocities of the AE signals recorded by a number of sensors. But complications arise as AE waves can travel in a structure in a number of different modes that have different velocities and frequencies. Hence, to accurately locate a source it is necessary to identify the modes recorded by the sensors. This study has proposed and tested the use of time-frequency analysis tools such as short time Fourier transform to identify the modes and the use of the velocities of these modes to achieve very accurate results. Further, this study has explored the possibility of reducing the number of sensors needed for data capture by using the velocities of modes captured by a single sensor for source localization. A major problem in practical use of AE technique is the presence of sources of AE other than crack related, such as rubbing and impacts between different components of a structure. These spurious AE signals often mask the signals from the crack activity; hence discrimination of signals to identify the sources is very important. This work developed a model that uses different signal processing tools such as cross-correlation, magnitude squared coherence and energy distribution in different frequency bands as well as modal analysis (comparing amplitudes of identified modes) for accurately differentiating signals from different simulated AE sources. Quantification tools to assess the severity of the damage sources are highly desirable in practical applications. Though different damage quantification methods have been proposed in AE technique, not all have achieved universal approval or have been approved as suitable for all situations. The b-value analysis, which involves the study of distribution of amplitudes of AE signals, and its modified form (known as improved b-value analysis), was investigated for suitability for damage quantification purposes in ductile materials such as steel. This was found to give encouraging results for analysis of data from laboratory, thereby extending the possibility of its use for real life structures. By addressing these primary issues, it is believed that this thesis has helped improve the effectiveness of AE technique for structural health monitoring of civil infrastructures such as bridges.
Resumo:
Selected chrysocolla mineral samples from different origins have been studied by using PXRD, SEM, EDX and XPS. The XRD patterns show that the chrysocolla mineral samples are non-diffracting and no other phases are present in the minerals, thus showing the chrysocolla samples are pure. SEM analyses show the chrysocolla surfaces are featureless. EDX analyses enable the formulae of the chrysocolla samples to be calculated. The thermal decomposition of the mineral chrysocolla has been studied using a combination of thermogravimetric analysis and derivative thermogravimetric analysis. Five thermal decomposition mass loss steps are observed for the chrysocolla from Arizona (a) at 125 ◦C with the loss of water, (b) at 340 ◦C with the loss of hydroxyl units, (c) at 468.5 ◦C with a further loss of hydroxyls, (d) at 821 ◦C with oxygen loss and (e) at 895 ◦C with a further loss of oxygen. The thermal analysis of the chrysocolla from Congo shows mass losses at 125, 275.3, 805.6 and 877.4 ◦C and for the Nevada chrysocolla, mass loss steps at 268, 333, 463, 786.0 and 817.7 ◦C are observed. The thermal analysis of spertiniite is very different from that of chrysocolla and thermally decomposes at around 160 ◦C. XPS shows that there are two different copper species present, one which is bonded to oxygen and one to a hydroxyl unit. The O 1s is broad and very symmetrical suggesting two O species of equal number. The bond energy of 102.9 eV for the Si 2p suggests that it is in the form of a silicate. The bond energy is much higher for silicas around ∼103.5 eV. The reported value for silica gel has Si 2p at 103.4 eV. The combination of TG, PXRD, EDX and XPS adds to our fundamental knowledge of the structure of chrysocolla.
Resumo:
Boron–nitrogen containing compounds with high hydrogen contents as represented by ammonia borane (NH3BH3) have recently attracted intense interest for potential hydrogen storage applications. One such compound is [(NH3)2BH2]B3H8 with a capacity of 18.2 wt% H. Two safe and efficient synthetic routes to [(NH3)2BH2]B3H8 have been developed for the first time since it was discovered 50 years ago. The new synthetic routes avoid a dangerous starting chemical, tetraborane (B4H10), and afford a high yield. Single crystal X-ray diffraction analysis reveals N–Hδ+Hδ−–B dihydrogen interactions in the [(NH3)2BH2]B3H8·18-crown-6 adduct. Extended strong dihydrogen bonds were observed in pure [(NH3)2BH2]B3H8 through crystal structure solution based upon powder X-ray analysis. Pyrolysis of [(NH3)2BH2]B3H8 leads to the formation of hydrogen gas together with appreciable amounts of volatile boranes below 160 °C.
Resumo:
Operational modal analysis (OMA) is prevalent in modal identifi cation of civil structures. It asks for response measurements of the underlying structure under ambient loads. A valid OMA method requires the excitation be white noise in time and space. Although there are numerous applications of OMA in the literature, few have investigated the statistical distribution of a measurement and the infl uence of such randomness to modal identifi cation. This research has attempted modifi ed kurtosis to evaluate the statistical distribution of raw measurement data. In addition, a windowing strategy employing this index has been proposed to select quality datasets. In order to demonstrate how the data selection strategy works, the ambient vibration measurements of a laboratory bridge model and a real cable-stayed bridge have been respectively considered. The analysis incorporated with frequency domain decomposition (FDD) as the target OMA approach for modal identifi cation. The modal identifi cation results using the data segments with different randomness have been compared. The discrepancy in FDD spectra of the results indicates that, in order to fulfi l the assumption of an OMA method, special care shall be taken in processing a long vibration measurement data. The proposed data selection strategy is easy-to-apply and verifi ed effective in modal analysis.