929 resultados para stress-based FLC


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Laser Shock Peening (LSP) is a surface enhancement treatment which induces a significant layer of beneficial compressive residual stresses of up to several mm underneath the surface of metal components in order to improve the detrimental effects of the crack growth behavior rate in it. The aim of this thesis is to predict the crack growth behavior in metallic specimens with one or more stripes which define the compressive residual stress area induced by the Laser Shock Peening treatment. The process was applied as crack retardation stripes perpendicular to the crack propagation direction with the object of slowing down the crack when approaching the peened stripes. The finite element method has been applied to simulate the redistribution of stresses in a cracked model when it is subjected to a tension load and to a compressive residual stress field, and to evaluate the Stress Intensity Factor (SIF) in this condition. Finally, the Afgrow software is used to predict the crack growth behavior of the component following the Laser Shock Peening treatment and to detect the improvement in the fatigue life comparing it to the baseline specimen. An educational internship at the “Research & Technologies Germany – Hamburg” department of AIRBUS helped to achieve knowledge and experience to write this thesis. The main tasks of the thesis are the following: •To up to date Literature Survey related to “Laser Shock Peening in Metallic Structures” •To validate the FE model developed against experimental measurements at coupon level •To develop design of crack growth slowdown in Centered Cracked Tension specimens based on residual stress engineering approach using laser peened strip transversal to the crack path •To evaluate the Stress Intensity Factor values for Centered Cracked Tension specimens after the Laser Shock Peening treatment via Finite Element Analysis •To predict the crack growth behavior in Centered Cracked Tension specimens using as input the SIF values evaluated with the FE simulations •To validate the results by means of experimental tests

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show that the variation of flow stress with strain rate and grain size in a magnesium alloy deformed at a constant strain rate and 450 °C can be predicted by a crystal plasticity model that includes grain boundary sliding and diffusion. The model predicts the grain size dependence of the critical strain rate that will cause a transition in deformation mechanism from dislocation creep to grain boundary sliding, and yields estimates for grain boundary fluidity and diffusivity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

AIM: To test whether quantitative stress echocardiography using contrast-based myocardial blood flow (MBF, ml x min(-1) x g(-1)) measurements can detect coronary artery disease in humans. METHODS: 48 patients eligible for pharmacological stress testing by myocardial contrast echocardiography (MCE) and willing to undergo subsequent coronary angiography were prospectively enrolled in the study. Baseline and adenosine-induced (140 microg x kg(-1) x min(-1)) hyperaemic MBF was analysed according to a three-coronary-artery-territory model. Vascular territories were categorised into three groups with increasing stenosis severity defined as percentage diameter reduction by quantitative coronary angiography. RESULTS: Myocardial blood flow reserve (MBFR)-that is, the ratio of hyperaemic to baseline MBF, was obtained in 128 (89%) territories. Mean (SD) baseline MBF was 1.073 (0.395) ml x min(-1) x g(-1) and did not differ between territories supplied by coronary arteries with mild (<50% stenosis), moderate (50%-74% stenosis) or severe (>or=75% stenosis) disease. Mean (SD) hyperaemic MBF and MBFR were 2.509 (1.078) ml x min(-1) x g(-1) and 2.54 (1.03), respectively, and decreased linearly (r2 = 0.21 and r2 = 0.39) with stenosis severity. ROC analysis revealed that a territorial MBFR <1.94 detected >or=50% stenosis with 89% sensitivity and 92% specificity. CONCLUSION: Quantitative stress testing based on MBF measurements derived from contrast echocardiography is a new method for the non-invasive and reliable assessment of coronary artery disease in humans.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several studies have shown associations of posttraumatic stress disorder (PTSD) with the development of cardiometabolic diseases. The underlying psychopathological mechanisms, including potential links to inflammatory processes, have been discussed but remain elusive. Therefore, the aim of the present study was to evaluate the association of PTSD symptoms with the inflammatory biomarkers C-reactive protein (CRP) and interleukin-18 (IL-18). The study population consisted of 3012 participants aged 32-81years drawn from the population-based KORA F4 study conducted in 2006-08 in the Augsburg region (Southern Germany). PTSD symptoms were measured by the Impact of Event Scale, the Posttraumatic Diagnostic Scale and interview data and classified as no, partial or full PTSD. The associations of PTSD with CRP and IL-18 concentrations were estimated by multiple regression analyses with adjustments for age, sex and cardiometabolic risk factors. Linear regression analyses showed no significant association between PTSD and CRP or IL-18 concentration: adjusted for age and sex, the geometric mean concentrations in participants with full PTSD was for CRP 9% lower and for IL-18 1% higher than in participants with no PTSD (p values 0.53 and 0.89). However, further analyses indicated that individuals with partial PTSD had an increased chance of belonging to the highest quartile of the IL-18 concentration. No significant association was observed for any of the three subscales intrusion, avoidance or hyperarousal with CRP or IL-18 concentration. This large, population-based study could not find an association of full PTSD with CRP and IL-18 concentrations. Further research is needed to analyse these relationships.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pregnant women with preterm labour (PTL) in pregnancy often experience increased distress and anxieties regarding both the pregnancy and the child's health. The pathogenesis of PTL is, among other causes, related to the stress-associated activation of the maternal-foetal stress system. In spite of these psychobiological associations, only a few research studies have investigated the potential of psychological stress-reducing interventions. The following paper will present an online anxiety and stress management self-help program for pregnant women with PTL. Structure and content of the program will be illustrated by a case-based experience report. L.B., 32 years (G3, P1), was recruited at gestational week 27 while hospitalized for PTL for 3 weeks. She worked independently through the program for 6 weeks and had regular written contact with a therapist. Processing the program had a positive impact on L.B.'s anxiety and stress levels, as well as on her experienced depressive symptoms and bonding to the foetus. As PTL and the risk of PTB are associated with distress, psychological stress-reducing interventions might be beneficial. This study examines the applicability of an online intervention for pregnant women with PTL. The case report illustrates how adequate low-threshold psychological support could be provided to these women.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stress can affect a person's psychological and physical health and cause a variety of conditions including depression, immune system changes, and hypertension (Alzheimer's Association, 2010; Aschbacher et al., 2009; Fredman et al., 2010; Long et al., 2004; Mills et al., 2009; von Känel et al., 2008). The severity and consequences of these conditions can vary based on the duration, amount, and sources of stress experienced by the individual (Black & Hyer, 2010; Coen et al., 1997; Conde-Sala et al., 2010; Pinquart & Sörensen, 2007). Caregivers of people with dementia have an elevated risk for stress and its related health problems because they experience more negative interactions with, and provide more emotional support for, their care recipients than other caregivers. ^ This paper uses a systematic program planning process of Intervention Mapping to organize evidence from literature, qualitative research and theory to develop recommendations for a theory- and evidence-based intervention to improve outcomes for caregivers of people with dementia. A needs assessment was conducted to identify specific dementia caregiver stress influences and a logic model of dementia caregiver stress was developed using the PRECEDE Model. Necessary behavior and environmental outcomes are identified for dementia caregiver stress reduction and performance objectives for each were combined with selected determinants to produce change objectives. Planning matrices were then designed to inform effective theory-based methods and practical applications for recommended intervention delivery. Recommendations for program components, their scope and sequence, the completed program materials, and the program protocols are delineated along with ways to insure that the program is adopted and implemented after it is shown to be effective.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A stress-detection system is proposed based on physiological signals. Concretely, galvanic skin response (GSR) and heart rate (HR) are proposed to provide information on the state of mind of an individual, due to their nonintrusiveness and noninvasiveness. Furthermore, specific psychological experiments were designed to induce properly stress on individuals in order to acquire a database for training, validating, and testing the proposed system. Such system is based on fuzzy logic, and it described the behavior of an individual under stressing stimuli in terms of HR and GSR. The stress-detection accuracy obtained is 99.5% by acquiring HR and GSR during a period of 10 s, and what is more, rates over 90% of success are achieved by decreasing that acquisition period to 3-5 s. Finally, this paper comes up with a proposal that an accurate stress detection only requires two physiological signals, namely, HR and GSR, and the fact that the proposed stress-detection system is suitable for real-time applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As an essential nutrient and a potential toxin, iron poses an exquisite regulatory problem in biology and medicine. At the cellular level, the basic molecular framework for the regulation of iron uptake, storage, and utilization has been defined. Two cytoplasmic RNA-binding proteins, iron-regulatory protein-1 (IRP-1) and IRP-2, respond to changes in cellular iron availability and coordinate the expression of mRNAs that harbor IRP-binding sites, iron-responsive elements (IREs). Nitric oxide (NO) and oxidative stress in the form of H2O2 also signal to IRPs and thereby influence cellular iron metabolism. The recent discovery of two IRE-regulated mRNAs encoding enzymes of the mitochondrial citric acid cycle may represent the beginnings of elucidating regulatory coupling between iron and energy metabolism. In addition to providing insights into the regulation of iron metabolism and its connections with other cellular pathways, the IRE/IRP system has emerged as a prime example for the understanding of translational regulation and mRNA stability control. Finally, IRP-1 has highlighted an unexpected role for iron sulfur clusters as post-translational regulatory switches.