964 resultados para stratified movement model
Resumo:
1. Nutrient concentrations (particularly N and P) determine the extent to which water bodies are or may become eutrophic. Direct determination of nutrient content on a wide scale is labour intensive but the main sources of N and P are well known. This paper describes and tests an export coefficient model for prediction of total N and total P from: (i) land use, stock headage and human population; (ii) the export rates of N and P from these sources; and (iii) the river discharge. Such a model might be used to forecast the effects of changes in land use in the future and to hindcast past water quality to establish comparative or baseline states for the monitoring of change. 2. The model has been calibrated against observed data for 1988 and validated against sets of observed data for a sequence of earlier years in ten British catchments varying from uplands through rolling, fertile lowlands to the flat topography of East Anglia. 3. The model predicted total N and total P concentrations with high precision (95% of the variance in observed data explained). It has been used in two forms: the first on a specific catchment basis; the second for a larger natural region which contains the catchment with the assumption that all catchments within that region will be similar. Both models gave similar results with little loss of precision in the latter case. This implies that it will be possible to describe the overall pattern of nutrient export in the UK with only a fraction of the effort needed to carry out the calculations for each individual water body. 4. Comparison between land use, stock headage, population numbers and nutrient export for the ten catchments in the pre-war year of 1931, and for 1970 and 1988 show that there has been a substantial loss of rough grazing to fertilized temporary and permanent grasslands, an increase in the hectarage devoted to arable, consistent increases in the stocking of cattle and sheep and a marked movement of humans to these rural catchments. 5. All of these trends have increased the flows of nutrients with more than a doubling of both total N and total P loads during the period. On average in these rural catchments, stock wastes have been the greatest contributors to both N and P exports, with cultivation the next most important source of N and people of P. Ratios of N to P were high in 1931 and remain little changed so that, in these catchments, phosphorus continues to be the nutrient most likely to control algal crops in standing waters supplied by the rivers studied.
Resumo:
The wood mouse is a common and abundant species in agricultural landscape and is a focal species in pesticide risk assessment. Empirical studies on the ecology of the wood mouse have provided sufficient information for the species to be modelled mechanistically. An individual-based model was constructed to explicitly represent the locations and movement patterns of individual mice. This together with the schedule of pesticide application allows prediction of the risk to the population from pesticide exposure. The model included life-history traits of wood mice as well as typical landscape dynamics in agricultural farmland in the UK. The model obtains a good fit to the available population data and is fit for risk assessment purposes. It can help identify spatio-temporal situations with the largest potential risk of exposure and enables extrapolation from individual-level endpoints to population-level effects. Largest risk of exposure to pesticides was found when good crop growth in the “sink” fields coincided with high “source” population densities in the hedgerows. Keywords: Population dynamics, Pesticides, Ecological risk assessment, Habitat choice, Agent-based model, NetLogo
Resumo:
The ECMWF operational grid point model (with a resolution of 1.875° of latitude and longitude) and its limited area version (with a resolution of !0.47° of latitude and longitude) with boundary values from the global model have been used to study the simulation of the typhoon Tip. The fine-mesh model was capable of simulating the main structural features of the typhoon and predicting a fall in central pressure of 60 mb in 3 days. The structure of the forecast typhoon, with a warm core (maximum potential temperature anomaly 17 K). intense swirling wind (maximum 55 m s-1 at 850 mb) and spiralling precipitation patterns is characteristic of a tropical cyclone. Comparison with the lower resolution forecast shows that the horizontal resolution is a determining factor in predicting not only the structure and intensity but even the movement of these vortices. However, an accurate and refined initial analysis is considered to be a prerequisite for a correct forecast of this phenomenon.
Resumo:
Hamburg atmospheric general circulation model ECHAM3 at T106 resolution (1.125' lat.Aon.) has considerable skill in reproducing the observed seasonal reversal of mean sea level pressure, the location of the summer heat low as well as the position of the monsoon trough over the Indian subcontinent. The present-day climate and its seasonal cycle are realistically simulated by the model over this region. The model simulates the structure, intensity, frequency, movement and lifetime of monsoon depressions remarkably well. The number of monsoon depressions/storms simulated by the model in a year ranged from 5 to 12 with an average frequency of 8.4 yr-', not significantly different from the observed climatology. The model also simulates the interannual variability in the formation of depressions over the north Bay of Bengal during the summer monsoon season. In the warmer atmosphere under doubled CO2 conditions, the number of monsoon depressions/cyclonic storms forming in Indian seas in a year ranged from 5 to 11 with an average frequency of 7.6 yr-', not significantly different from those inferred in the control run of the model. However, under doubled CO2 conditions, fewer depressions formed in the month of June. Neither the lowest central pressure nor the maximum wind speed changes appreciably in monsoon depressions identified under simulated enhanced greenhouse conditions. The analysis suggests there will be no significant changes in the number and intensity of monsoon depressions in a warmer atmosphere.
Resumo:
Nonlinear stability theorems analogous to Arnol'd's second stability theorem are established for continuously stratified quasi-geostrophic flow with general nonlinear boundary conditions in a vertically and horizontally confined domain. Both the standard quasi-geostrophic model and the modified quasi-geostrophic model (incorporating effects of hydrostatic compressibility) are treated. The results establish explicit upper bounds on the disturbance energy, the disturbance potential enstrophy, and the disturbance available potential energy on the horizontal boundaries, in terms of the initial disturbance fields. Nonlinear stability in the sense of Liapunov is also established.
Resumo:
A nonlinear stability theorem is established for Eady's model of baroclinic flow. In particular, the Eady basic state is shown to be nonlinearly stable (for arbitrary shear) provided (Δz)/(Δy) > 2(5)^1/2f/(πN),where Δz is the height of the domain, Δy the channel width, f the Coriolis parameter, and N the buoyancy frequency. When this criterion is satisfied, explicit bounds can be derived on the disturbance potential enstrophy, the disturbance energy, and the disturbance available potential energy on the rigid lids, which are expressed in terms of the initial disturbance fields. The disturbances are completely general (with nonzero potential vorticity) and are not assumed to be of small amplitude. The results may be regarded as an extension of Arnol'd's second nonlinear stability theorem to continuously stratified quasigeostrophic baroclinic flow.
Resumo:
Rigorous upper bounds are derived that limit the finite-amplitude growth of arbitrary nonzonal disturbances to an unstable baroclinic zonal flow in a continuously stratified, quasi-geostrophic, semi-infinite fluid. Bounds are obtained bath on the depth-integrated eddy potential enstrophy and on the eddy available potential energy (APE) at the ground. The method used to derive the bounds is essentially analogous to that used in Part I of this study for the two-layer model: it relies on the existence of a nonlinear Liapunov (normed) stability theorem, which is a finite-amplitude generalization of the Charney-Stern theorem. As in Part I, the bounds are valid both for conservative (unforced, inviscid) flow, as well as for forced-dissipative flow when the dissipation is proportional to the potential vorticity in the interior, and to the potential temperature at the ground. The character of the results depends on the dimensionless external parameter γ = f02ξ/β0N2H, where ξ is the maximum vertical shear of the zonal wind, H is the density scale height, and the other symbols have their usual meaning. When γ ≫ 1, corresponding to “deep” unstable modes (vertical scale ≈H), the bound on the eddy potential enstrophy is just the total potential enstrophy in the system; but when γ≪1, corresponding to ‘shallow’ unstable modes (vertical scale ≈γH), the eddy potential enstrophy can be bounded well below the total amount available in the system. In neither case can the bound on the eddy APE prevent a complete neutralization of the surface temperature gradient which is in accord with numerical experience. For the special case of the Charney model of baroclinic instability, and in the limit of infinitesimal initial eddy disturbance amplitude, the bound states that the dimensionless eddy potential enstrophy cannot exceed (γ + 1)2/24&gamma2h when γ ≥ 1, or 1/6;&gammah when γ ≤ 1; here h = HN/f0L is the dimensionless scale height and L is the width of the channel. These bounds are very similar to (though of course generally larger than) ad hoc estimates based on baroclinic-adjustment arguments. The possibility of using these kinds of bounds for eddy-amplitude closure in a transient-eddy parameterization scheme is also discussed.
Resumo:
Geophysical fluid models often support both fast and slow motions. As the dynamics are often dominated by the slow motions, it is desirable to filter out the fast motions by constructing balance models. An example is the quasi geostrophic (QG) model, which is used widely in meteorology and oceanography for theoretical studies, in addition to practical applications such as model initialization and data assimilation. Although the QG model works quite well in the mid-latitudes, its usefulness diminishes as one approaches the equator. Thus far, attempts to derive similar balance models for the tropics have not been entirely successful as the models generally filter out Kelvin waves, which contribute significantly to tropical low-frequency variability. There is much theoretical interest in the dynamics of planetary-scale Kelvin waves, especially for atmospheric and oceanic data assimilation where observations are generally only of the mass field and thus do not constrain the wind field without some kind of diagnostic balance relation. As a result, estimates of Kelvin wave amplitudes can be poor. Our goal is to find a balance model that includes Kelvin waves for planetary-scale motions. Using asymptotic methods, we derive a balance model for the weakly nonlinear equatorial shallow-water equations. Specifically we adopt the ‘slaving’ method proposed by Warn et al. (Q. J. R. Meteorol. Soc., vol. 121, 1995, pp. 723–739), which avoids secular terms in the expansion and thus can in principle be carried out to any order. Different from previous approaches, our expansion is based on a long-wave scaling and the slow dynamics is described using the height field instead of potential vorticity. The leading-order model is equivalent to the truncated long-wave model considered previously (e.g. Heckley & Gill, Q. J. R. Meteorol. Soc., vol. 110, 1984, pp. 203–217), which retains Kelvin waves in addition to equatorial Rossby waves. Our method allows for the derivation of higher-order models which significantly improve the representation of Rossby waves in the isotropic limit. In addition, the ‘slaving’ method is applicable even when the weakly nonlinear assumption is relaxed, and the resulting nonlinear model encompasses the weakly nonlinear model. We also demonstrate that the method can be applied to more realistic stratified models, such as the Boussinesq model.
Resumo:
Although it plays a key role in the theory of stratified turbulence, the concept of available potential energy (APE) dissipation has remained until now a rather mysterious quantity, owing to the lack of rigorous result about its irreversible character or energy conversion type. Here, we show by using rigorous energetics considerations rooted in the analysis of the Navier-Stokes for a fully compressible fluid with a nonlinear equation of state that the APE dissipation is an irreversible energy conversion that dissipates kinetic energy into internal energy, exactly as viscous dissipation. These results are established by showing that APE dissipation contributes to the irreversible production of entropy, and by showing that it is a part of the work of expansion/contraction. Our results provide a new interpretation of the entropy budget, that leads to a new exact definition of turbulent effective diffusivity, which generalizes the Osborn-Cox model, as well as a rigorous decomposition of the work of expansion/contraction into reversible and irreversible components. In the context of turbulent mixing associated with parallel shear flow instability, our results suggests that there is no irreversible transfer of horizontal momentum into vertical momentum, as seems to be required when compressible effects are neglected, with potential consequences for the parameterisations of momentum dissipation in the coarse-grained Navier-Stokes equations.
Resumo:
Hoards of denarii are common in Britain and the number which have been recorded in detail means that it is now possible to suggest reasonably accurately what a ‘normal’ hoard of a particular date should look like. That being the case, we can then look for variation around that norm and both investigate and speculate what that variation means. A methodology is developed which suggests periods of faster and less rapid coin circulation which has implications for consideration of monetisation. The model also enables us to view where denarii entered circulation; unsurprisingly the army looms large in this picture. The methodology is directly transferable to other provinces and other periods where there are longlived, relatively stable monetary systems.
Resumo:
Earthworms are significant ecosystem engineers and are an important component of the diet of many vertebrates and invertebrates, so the ability to predict their distribution and abundance would have wide application in ecology, conservation and land management. Earthworm viability is known to be affected by the availability and quality of food resources, soil water conditions and temperature, but has not yet been modelled mechanistically to link effects on individuals to field population responses. Here we present a novel model capable of predicting the effects of land management and environmental conditions on the distribution and abundance of Aporrectodea caliginosa, the dominant earthworm species in agroecosystems. Our process-based approach uses individual based modelling (IBM), in which each individual has its own energy budget. Individual earthworm energy budgets follow established principles of physiological ecology and are parameterised for A. caliginosa from experimental measurements under optimal conditions. Under suboptimal conditions (e.g. food limitation, low soil temperatures and water contents) reproduction is prioritised over growth. Good model agreement to independent laboratory data on individual cocoon production and growth of body mass, under variable feeding and temperature conditions support our representation of A. caliginosa physiology through energy budgets. Our mechanistic model is able to accurately predict A. caliginosa distribution and abundance in spatially heterogeneous soil profiles representative of field study conditions. Essential here is the explicit modelling of earthworm behaviour in the soil profile. Local earthworm movement responds to a trade-off between food availability and soil water conditions, and this determines the spatiotemporal distribution of the population in the soil profile. Importantly, multiple environmental variables can be manipulated simultaneously in the model to explore earthworm population exposure and effects to combinations of stressors. Potential applications include prediction of the population-level effects of pesticides and changes in soil management e.g. conservation tillage and climate change.
Resumo:
Compared to skilled adult readers, children typically make more fixations that are longer in duration, shorter saccades, and more regressions, thus reading more slowly (Blythe & Joseph, 2011). Recent attempts to understand the reasons for these differences have discovered some similarities (e.g., children and adults target their saccades similarly; Joseph, Liversedge, Blythe, White, & Rayner, 2009) and some differences (e.g., children’s fixation durations are more affected by lexical variables; Blythe, Liversedge, Joseph, White, & Rayner, 2009) that have yet to be explained. In this article, the E-Z Reader model of eye-movement control in reading (Reichle, 2011; Reichle, Pollatsek, Fisher, & Rayner, 1998) is used to simulate various eye-movement phenomena in adults versus children in order to evaluate hypotheses about the concurrent development of reading skill and eye-movement behavior. These simulations suggest that the primary difference between children and adults is their rate of lexical processing, and that different rates of (post-lexical) language processing may also contribute to some phenomena (e.g., children’s slower detection of semantic anomalies; Joseph et al., 2008). The theoretical implications of this hypothesis are discussed, including possible alternative accounts of these developmental changes, how reading skill and eye movements change across the entire lifespan (e.g., college-aged vs. elderly readers), and individual differences in reading ability.
Resumo:
We investigated the processes of how adult readers evaluate and revise their situation model during reading by monitoring their eye movements as they read narrative texts and subsequent critical sentences. In each narrative text, a short introduction primed a knowledge-based inference, followed by a target concept that was either expected (e.g., “oven”) or unexpected (e.g., “grill”) in relation to the inferred concept. Eye movements showed that readers detected a mismatch between the new unexpected information and their prior interpretation, confirming their ability to evaluate inferential information. Just below the narrative text, a critical sentence included a target word that was either congruent (e.g., “roasted”) or incongruent (e.g., “barbecued”) with the expected but not the unexpected concept. Readers spent less time reading the congruent than the incongruent target word, reflecting the facilitation of prior information. In addition, when the unexpected (but not expected) concept had been presented, participants with lower verbal (but not visuospatial) working memory span exhibited longer reading times and made more regressions (from the critical sentence to previous information) on encountering congruent information, indicating difficulty in inhibiting their initial incorrect interpretation and revising their situation model
Resumo:
Most CRM work focuses on consumer applications. This paper addresses the operational adoption issues facing the organisation deploying CRM practices. There are a plethora of challenges facing organisations when adopting CRM. Previous research is limited to either examining the CRM adoption process at an individual/employees level or an organisational level. Hence, in this paper the myriad of organisational, marketing and technical antecedents that seem to impinge upon employee perceptions and organisational implementation of CRM are structured in a two-stage model. Using a stratified sample of ten organisations across four sectors, seven hypotheses are tested on data collected from 301 practitioners. A two-stage model is analysed using structural equation modelling. Findings reveal that CRM implementation relates to employee perceptions of CRM. This paper deepens our understanding of organisational practices to adopt CRM, so as an organisation properly profits from the expected benefits of CRM.
Resumo:
There is a need of scientific evidence of claimed nutraceutical effects, but also there is a social movement towards the use of natural products and among them algae are seen as rich resources. Within this scenario, the development of methodology for rapid and reliable assessment of markers of efficiency and security of these extracts is necessary. The rat treated with streptozotocin has been proposed as the most appropriate model of systemic oxidative stress for studying antioxidant therapies. Cystoseira is a brown alga containing fucoxanthin and other carothenes whose pressure-assisted extracts were assayed to discover a possible beneficial effect on complications related to diabetes evolution in an acute but short-term model. Urine was selected as the sample and CE-TOF-MS as the analytical technique to obtain the fingerprints in a non-target metabolomic approach. Multivariate data analysis revealed a good clustering of the groups and permitted the putative assignment of compounds statistically significant in the classification. Interestingly a group of compounds associated to lysine glycation and cleavage from proteins was found to be increased in diabetic animals receiving vehicle as compared to control animals receiving vehicle (N6, N6, N6-trimethyl-L-lysine, N-methylnicotinamide, galactosylhydroxylysine, L-carnitine, N6-acetyl-N6-hydroxylysine, fructose-lysine, pipecolic acid, urocanic acid, amino-isobutanoate, formylisoglutamine. Fructoselysine significantly decreased after the treatment changing from a 24% increase to a 19% decrease. CE-MS fingerprinting of urine has provided a group of compounds different to those detected with other techniques and therefore proves the necessity of a cross-platform analysis to obtain a broad view of biological samples.