937 resultados para strain gauge sensor


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents an innovative sensor system, created specifically for new civil engineering structural monitoring applications, allowing specially packaged fiber grating-based sensors to be used in harsh, in-the-field measurement conditions for accurate strain measurement with full temperature compensation. The sensor consists of two fiber Bragg gratings that are protected within a polypropylene package, with one of the fiber gratings isolated from the influence of strain and thus responding only to temperature variations, while the other is sensitive to both strain and temperature. To achieve this, the temperature-monitoring fiber grating is slightly bent and enclosed in a metal envelope to isolate it effectively from the strain. Through an appropriate calibration process, both the strain and temperature coefficients of each individual grating component when incorporated in the sensor system can be thus obtained. By using these calibrated coefficients in the operation of the sensor, both strain and temperature can be accurately determined. The specific application for which these sensors have been designed is seen when installed on an innovative small-scale flexi-arch bridge where they are used for real-time strain measurements during the critical installation stage (lifting) and loading. These sensors have demonstrated enhanced resilience when embedded in or surface-mounted on such concrete structures, providing accurate and consistent strain measurements not only during installation but subsequently during use. This offers an inexpensive and highly effective monitoring system tailored for the new, rapid method of the installation of small-scale bridges for a variety of civil engineering applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper addresses the problems of effective in situ measurement of the real-time strain for bridge weigh in motion in reinforced concrete bridge structures through the use of optical fiber sensor systems. By undertaking a series of tests, coupled with dynamic loading, the performance of fiber Bragg grating-based sensor systems with various amplification techniques were investigated. In recent years, structural health monitoring (SHM) systems have been developed to monitor bridge deterioration, to assess load levels and hence extend bridge life and safety. Conventional SHM systems, based on measuring strain, can be used to improve knowledge of the bridge's capacity to resist loads but generally give no information on the causes of any increase in stresses. Therefore, it is necessary to find accurate sensors capable of capturing peak strains under dynamic load and suitable methods for attaching these strain sensors to existing and new bridge structures. Additionally, it is important to ensure accurate strain transfer between concrete and steel, adhesives layer, and strain sensor. The results show the benefits in the use of optical fiber networks under these circumstances and their ability to deliver data when conventional sensors cannot capture accurate strains and/or peak strains.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a novel optical fibre based micro contact probe system with high sensitivity and repeatability. In this optical fibre probe with a fused spherical tip, a fibre Bragg grating has been utilized as a strain sensor in the probe stem. When the probe tip contacts the surface of the part, a strain will be induced along the probe stem and will produce a Bragg wavelength shift. The contact signal can be issued once the wavelength shift signal is produced and demodulated. With the fibre grating sensor element integrated into the probe directly, the probe system shows a high sensitivity. In this work, the strain distributions along the probe stem with the probe under axial and lateral load are analysed. A simulation of the strain distribution was performed using the finite element package ANSYS 11. Performance tests using a piezoelectric transducer stage with a displacement resolution of 1.5 nm yielded a measurement resolution of 60 nm under axial loading.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper reports a packaging and calibration procedure for surface mounting of fiber Bragg grating (FBG) sensors to measure strain in rocks. The packaging of FBG sensors is performed with glass fiber and polyester resin, and then subjected to tensile loads in order to obtain strength and deformability parameters, necessaries to assess the mechanical performance of the sensor packaging. For a specific package, an optimal curing condition has been found, showing good repeatability and adaptability for non-planar surfaces, such as occurs in rock engineering. The successfully packaged sensors and electrical strain gages were attached to standard rock specimens of gabbro. Longitudinal and transversal strains under compression loads were measured with both techniques, showing that response of FBG sensors is linear and reliable. An analytical model is used to characterize the influences of rock substrate and FBG packaging in strain transmission. As a result, we obtained a sensor packaging for non-planar and complex natural material under acceptable sensitivity suitable for very small strains as occurs in hard rocks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A prototype fibre-optic system using interferometric wavelength-shift detection, capable of multiplexing up to 32 fibre-optic Bragg grating strain and temperature sensors with identical characteristics, has been demonstrated. This system is based on a spatially multiplexed scheme for use with fibre-based low-coherence interferometric sensors, reported previously. Four fibre-optic Bragg grating channels using the same fibre grating have been demonstrated for measuring quasi-static strain and temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we report a systematic investigation of the dependence of both temperature and strain sensitivities on the jiber Bragg grating (FBG) type, including the wellknown Type I, Type IIA, and a new type which we have designated Type 1.4, using both hydrogen-Ji-ee and hydrogenated B/Ge codoped jibers. We have identijed distinct sensitivity characteristics for each grating type, and we have utilised them to implement a novel dual-grating, duul-parameter sensor device. Three dual-grating sensing schemes with different combinations of gruting types have been constructed and compared. The Type IA-Type IIA combination exhibits the best pe$ormance and is superior to that of previously reported gruting-based structures. The characteristics of the measurement errors in such dualgrating sensor systems is also presented in detail.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A potential low cost novel sensing scheme for monitoring absolute strain is demonstrated. The scheme utilizes a synthetic heterodyne interrogation technique working in conjunction with a linearly chirped, sinusoidally tapered, apodized Bragg grating sensor. The interrogation technique is relatively simple to implement in terms of the required optics and the peripheral electronics. This scheme generates an output signal that has a quasi-linear response to absolute strain with a static strain resolution of ~±20 με and an operating range of ~1000 με.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel distributed strain sensor is presented utilizing the strain dependence of the frequency at which the Brillouin loss is maximized in the interaction between a cw laser and a pulsed laser. A strain resolution of 20 µ with a spatial resolution of 5 m has been achieved with a 22 km sensing length.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a novel distributed sensor that utilizes the temperature and strain dependence of the frequency at which the Brillouin loss is maximized in the interaction between a cw laser and a pulsed laser. With a 22-km sensing length, a strain resolution of 20 µ? and a temperature resolution of 2°C have been achieved with a spatial resolution of 5 m.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe a frequency-modulation technique that is applicable to two-beam interferometric systems illuminated by semiconductor diode lasers. The technique permits a determination of the optical path difference between the two arms of the interferometer and is used here to extend the range of a fiber polarimetric strain sensor by determining the order of the particular polarimetric fringe under consideration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a compact, portable and low cost generic interrogation strain sensor system using a fibre Bragg grating configured in transmission mode with a vertical-cavity surface-emitting laser (VCSEL) light source and a GaAs photodetector embedded in a polymer skin. The photocurrent value is read and stored by a microcontroller. In addition, the photocurrent data is sent via Bluetooth to a computer or tablet device that can present the live data in a real time graph. With a matched grating and VCSEL, the system is able to automatically scan and lock the VCSEL to the most sensitive edge of the grating. Commercially available VCSEL and photodetector chips are thinned down to 20 µm and integrated in an ultra-thin flexible optical foil using several thin film deposition steps. A dedicated micro mirror plug is fabricated to couple the driving optoelectronics to the fibre sensors. The resulting optoelectronic package can be embedded in a thin, planar sensing sheet and the host material for this sheet is a flexible and stretchable polymer. The result is a fully embedded fibre sensing system - a photonic skin. Further investigations are currently being carried out to determine the stability and robustness of the embedded optoelectronic components. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we report a systematic investigation of the dependence of both temperature and strain sensitivities on the jiber Bragg grating (FBG) type, including the wellknown Type I, Type IIA, and a new type which we have designated Type 1.4, using both hydrogen-Ji-ee and hydrogenated B/Ge codoped jibers. We have identijed distinct sensitivity characteristics for each grating type, and we have utilised them to implement a novel dual-grating, duul-parameter sensor device. Three dual-grating sensing schemes with different combinations of gruting types have been constructed and compared. The Type IA-Type IIA combination exhibits the best pe$ormance and is superior to that of previously reported gruting-based structures. The characteristics of the measurement errors in such dualgrating sensor systems is also presented in detail.