878 resultados para stereo 3D
Resumo:
In this work, plasticizer agents were incorporated in a chitosan based formulation, as a strategy to improve the fragile structure of chitosan based-materials. Three different plasticizers: ethylene glycol, glycerol and sorbitol, were blended with chitosan to prepare 3D dense chitosan specimens. The properties of the obtained structures were assessed for mechanical, microstructural, physical and biocompatibility behavior. The results obtained revealed that from the different specimens prepared, the blend of chitosan with glycerol has superior mechanical properties and good biological behavior, making this chitosan based formulation a good candidate to improve robust chitosan structures for the construction of bioabsorbable orthopedic implants.
Resumo:
This paper addresses the estimation of surfaces from a set of 3D points using the unified framework described in [1]. This framework proposes the use of competitive learning for curve estimation, i.e., a set of points is defined on a deformable curve and they all compete to represent the available data. This paper extends the use of the unified framework to surface estimation. It o shown that competitive learning performes better than snakes, improving the model performance in the presence of concavities and allowing to desciminate close surfaces. The proposed model is evaluated in this paper using syntheticdata and medical images (MRI and ultrasound images).
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica.
Resumo:
Trabalho de Projecto apresentado para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Novos Media e Práticas Web
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Geológica (Georrecursos)
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Biomédica
Resumo:
A sequente dissertação resulta do desenvolvimento de um sistema de navegação subaquático para um Remotely Operated Vehicle (ROV). A abordagem proposta consiste de um algoritmo em tempo real baseado no método de Mapeamento e Localização Simultâneo (SLAM) a partir de marcadores em ambientes marinhos não estruturados. SLAM introduz dois principais desafios: (i) reconhecimento dos marcadores provenientes dos dados raw do sensor, (ii) associação de dados. Na detecção dos marcadores foram aplicadas técnicas de visão artificial baseadas na extracção de pontos e linhas. Para testar o uso de features no visual SLAM em tempo real nas operações de inspecção subaquáticas foi desenvolvida uma plataforma modicada do RT-SLAM que integra a abordagem EKF SLAM. A plataforma é integrada em ROS framework e permite estimar a trajetória 3D em tempo real do ROV VideoRay Pro 3E até 30 fps. O sistema de navegação subaquático foi caracterizado num tanque instalado no Laboratório de Sistemas Autónomos através de um sistema stereo visual de ground truth. Os resultados obtidos permitem validar o sistema de navegação proposto para veículos subaquáticos. A trajetória adquirida pelo VideoRay em ambiente controlado é validada pelo sistema de ground truth. Dados para ambientes não estruturados, como um gasoduto, foram adquiridos e obtida respectiva trajetória realizada pelo robô. Os dados apresentados comprovam uma boa precisão e exatidão para a estimativa da posição.
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
The underground scenarios are one of the most challenging environments for accurate and precise 3d mapping where hostile conditions like absence of Global Positioning Systems, extreme lighting variations and geometrically smooth surfaces may be expected. So far, the state-of-the-art methods in underground modelling remain restricted to environments in which pronounced geometric features are abundant. This limitation is a consequence of the scan matching algorithms used to solve the localization and registration problems. This paper contributes to the expansion of the modelling capabilities to structures characterized by uniform geometry and smooth surfaces, as is the case of road and train tunnels. To achieve that, we combine some state of the art techniques from mobile robotics, and propose a method for 6DOF platform positioning in such scenarios, that is latter used for the environment modelling. A visual monocular Simultaneous Localization and Mapping (MonoSLAM) approach based on the Extended Kalman Filter (EKF), complemented by the introduction of inertial measurements in the prediction step, allows our system to localize himself over long distances, using exclusively sensors carried on board a mobile platform. By feeding the Extended Kalman Filter with inertial data we were able to overcome the major problem related with MonoSLAM implementations, known as scale factor ambiguity. Despite extreme lighting variations, reliable visual features were extracted through the SIFT algorithm, and inserted directly in the EKF mechanism according to the Inverse Depth Parametrization. Through the 1-Point RANSAC (Random Sample Consensus) wrong frame-to-frame feature matches were rejected. The developed method was tested based on a dataset acquired inside a road tunnel and the navigation results compared with a ground truth obtained by post-processing a high grade Inertial Navigation System and L1/L2 RTK-GPS measurements acquired outside the tunnel. Results from the localization strategy are presented and analyzed.
Resumo:
Oceans - San Diego, 2013
Resumo:
13th International Conference on Autonomous Robot Systems (Robotica), 2013
Resumo:
This work presents an automatic calibration method for a vision based external underwater ground-truth positioning system. These systems are a relevant tool in benchmarking and assessing the quality of research in underwater robotics applications. A stereo vision system can in suitable environments such as test tanks or in clear water conditions provide accurate position with low cost and flexible operation. In this work we present a two step extrinsic camera parameter calibration procedure in order to reduce the setup time and provide accurate results. The proposed method uses a planar homography decomposition in order to determine the relative camera poses and the determination of vanishing points of detected lines in the image to obtain the global pose of the stereo rig in the reference frame. This method was applied to our external vision based ground-truth at the INESC TEC/Robotics test tank. Results are presented in comparison with an precise calibration performed using points obtained from an accurate 3D LIDAR modelling of the environment.
Resumo:
In this work we propose the development of a stereo SLS system for underwater inspection operations. We demonstrate how to perform a SLS calibration both in dry and underwater environments using two different methods. The proposed methodology is able to achieve quite accurate results, lower than 1 mm in dry environments. We also display a 3D underwater scan of a known object size, a sea scallop, where the system is able to perform a scan with a global error lower than 2% of the object size.
Resumo:
We present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle’s angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method’s instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved.
Resumo:
In this paper we propose a novel fully probabilistic solution to the stereo egomotion estimation problem. We extend the notion of probabilistic correspondence to the stereo case which allow us to compute the whole 6D motion information in a probabilistic way. We compare the developed approach against other known state-of-the-art methods for stereo egomotion estimation, and the obtained results compare favorably both for the linear and angular velocities estimation.