947 resultados para spontaneously hypertensive rats


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: Angiotensin-converting enzyme (ACE) inhibitors are used in diabetic kidney disease to reduce systemic/intra-glomerular pressure. The objective of this study was to investigate whether reducing blood pressure (BP) could modulate renal glucose transporter expression, and urinary markers of diabetic nephropathy in diabetic hypertensive rats treated with ramipril or amlodipine. Main methods: Diabetes was induced in spontaneously-hypertensive rats (~210 g) by streptozotocin (50 mg/kg). Thirty days later, animals received ramipril 15 μg/kg/day (R, n =10), or amlodipine 10 mg/kg/day (A, n= 8,) or water (C, n = 10) by gavage. After 30-day treatment, body weight, glycaemia, urinary albumin and TGF-β1 (enzyme-linked immunosorbent assay) and BP (tail-cuff pressure method) were evaluated. Kidneys were removed for evaluation of renal cortex glucose transporters (Western blotting) and renal tissue ACE activity (fluorometric assay). Key findings: After treatments, body weight (p = 0.77) and glycaemia (p = 0.22) were similar among the groups. Systolic BP was similarly reduced (p < 0.001) in A and R vs. C (172.4 ± 3.2; 186.7 ± 3.7 and 202.2 ± 4.3 mm Hg; respectively). ACE activity (C: 0.903 ± 0.086; A: 0.654 ± 0.025, and R: 0.389 ± 0.057 mU/mg), albuminuria (C: 264.8 ± 15.4; A: 140.8 ± 13.5 and R: 102.8 ± 6.7 mg/24 h), and renal cortex GLUT1 content (C: 46.81 ± 4.54; A: 40.30 ± 5.39 and R: 26.89 ± 0.79 AU) decreased only in R (p < 0.001, p < 0.05 and p < 0.001; respectively). Significance:We concluded that the blockade of the renin–angiotensin systemwith ramipril reduced earlymarkers of diabetic nephropathy, a phenomenon that cannot be specifically related to decreased BP levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In endothelial cells, stretch-activated cation channels have been proposed to act as mechanosensors for changes in hemodynamic forces. We have identified a novel mechanosensitive pressure-activated channel in intact endothelium from rat aorta and mesenteric artery. The 18-pS cation channel responded with a multifold increase in channel activity when positive pressure was applied to the luminal cell surface with the patch pipette and inactivated at negative pipette pressure. Channel permeability ratio for K+, Na+, and Ca2+ ions was 1:0.98:0.23. Ca2+ influx through the channel was sufficient to activate a neighboring Ca2(+)-dependent K+ channel. Hemodynamic forces are chronically disturbed in arterial hypertension. Endothelial cell dysfunction has been implicated in the pathogenesis of arterial hypertension. In two comparative studies, density of the pressure-activated channel was found to be significantly higher in spontaneously hypertensive rats and renovascular hypertensive rats compared with their respective normotensive controls. Channel activity presumably leads to mechanosensitive Ca2+ influx and induces cell hyperpolarization by K+ channel activity. Both Ca2+ influx and hyperpolarization are known to induce a vasodilatory endothelial response by stimulating endothelial nitric oxide (NO) production. Up-regulation of channel density in hypertension could, therefore, represent a counterregulatory mechanism of vascular endothelium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the effects of nicotine on global gene expression of cultured cells from the brainstem of spontaneously hypertensive rat (SHR) and normotensive Wistar Kyoto (WKY) rats were evaluated using whole-genome oligoarrays. We found that nicotine may act differentially on the gene expression profiles of SHR and WKY. The influence of strain was present in 321 genes that were differentially expressed in SHR as compared with WKY brainstem cells independently of the nicotine treatment. A total of 146 genes had their expression altered in both strains after nicotine exposure. Interaction between nicotine treatment and the strain was observed to affect the expression of 229 genes that participate in cellular pathways related to neurotransmitter secretion, intracellular trafficking and cell communication, and are possibly involved in the phenotypic differentiation between SHR and WKY rats, including hypertension. Further characterization of their function in hypertension development is warranted. The Pharmacogenomics Journal (2010) 10, 134-160; doi:10.1038/tpj.2009.42; published online 15 September 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spontaneously hypertensive rat (SHR) is a good model to study several diseases such as the attention-deficit hyperactivity disorder, cardiopulmonary impairment, nephropathy, as well as hypertension, which is a multifactor disease that possibly involves alterations in gene expression in hypertensive relative to normotensive subjects. In this study, we used high-density oligoarrays to compare gene expression profiles in cultured neurons and glia from brainstem of newborn normotensive Wistar Kyoto (WKY) and SHR rats. We found 376 genes differentially expressed between SHR and WKY brainstem cells that preferentially map to 17 metabolic/signaling pathways. Some of the pathways and regulated genes identified herein are obviously related to cardiovascular regulation; in addition there are several genes differentially expressed in SHR not yet associated to hypertension, which may be attributed to other differences between SHR and WKY strains. This constitute a rich resource for the identification and characterization of novel genes associated to phenotypic differences observed in SHR relative to WKY, including hypertension. In conclusion, this study describes for the first time the gene profiling pattern of brainstem cells from SHR and WKY rats, which opens up new possibilities and strategies of investigation and possible therapeutics to hypertension, as well as for the understanding of the brain contribution to phenotypic differences between SHR and WKY rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stress-induced vascular adaptive response in SHR was investigated, focusing on the endothelium. Noradrenaline responses were studied in intact and denuded aortas from 6-week-old (prehypertensive) and 14-week-old (hypertensive) SHR and age-matched Wistar rats submitted or not to acute stress (20-min swimming and I-h immobilization 25 min apart), preceded or not by chronic stress (2 sessions 2 days apart of 1-h day immobilization for 5-consecutive days). Stress did not alter the reactivity of denuded aorta. Moreover, no alteration in the EC50 values was observed after stress exposure. In intact aortas, acute stress-induced hyporeactivity to noradrenaline similar between strains at both age. Chronic stress potentiated this adaptive response in 6- and 14-week-old Wistar but not in 6-week-old SHR, and did not alter the reactivity of 14-week-old SHR. Maximum response (g) in intact aortas [6-week-old: Wistar 3.25 +/- 0.12, Wistar/acute 1.95 +/- 0.12*, Wistar/chronic 1.36 +/- 0.21*(+), SHR 1.75 +/- 0.11, SHR/acute 0.88 +/- 0.08*, SHR/chronic 0.85 +/- 0.05*; 14-week-old: Wistar 3.83 +/- 0.13, Wistar/acute 2.72 +/- 0.13*, Wistar/chronic 1.91 +/- 0.19*', SHR 4.03 +/- 0.17, SHR/acute 2.26 +/- 0.12*, SHR/chronic 4.10 +/- 0.23; inside the same strain: *P < 0.05 relate to non-stressed rat, (+)P < 0.05 related to acute stressed rat; n = 6-18]. Independent of age and strain, L-NAME and endothelium removal abolished the stress-induced aorta hyporeactivity. Conclusion: the vascular adaptive response to stress is impaired in SHR, independently of the hypertensive state. Moreover, this vascular adaptive response is characterized by endothelial nitric oxide-system hyperactivity in both strains. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The spontaneously hypertensive rat (SHR) is frequently used as model of cardiovascular disease, with considerable disparity in reported parameters of hypertrophy. The aim of this study was to assess the temporal changes occurring during the development and progression of cardiomyocyte hypertrophy in SHR, subsequent to pressure overload, compared to changes associated with normal aging using the normotensive Wistar–Kyoto (WKY) rat. Methods Ventricular cardiomyocytes were isolated from rats at 8, 12, 16, 20 and 24 weeks, and parameters of hypertrophy (cell dimensions, protein mass, de novo protein synthesis, and gene expression) and function (contraction and hypertrophic responsiveness in vitro) were assessed. Results Hypertension was evident at =7 weeks in SHRs. Heart:body mass ratio, cardiomyocyte protein mass and width were elevated (P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of exercise training on systolic blood pressure (BP), insulin sensitivity, and plasma membrane GLUT4 protein content in spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats were compared. 16 SHR and 16 WKY male rats, aged 6 months, were randomized into sedentary and trained (tread-mill running, 5 days/week, 60 min/day for 10 weeks) groups (n = 8/group). At baseline, SHR had lower insulin sensitivity than WKY rats, however, there were no differences between WKY and SHR GLUT4 expression. The 10-week training reduced BP by similar to 19% in SHR, improved insulin sensitivity by similar to 24% in SHR, but not in WKY, and increased GLUT4 expression in both animal models. Compared to the sedentary group, there was an increase of GLUT4 in WKY rats by similar to 25% in the heart, by similar to 23% in the gastrocnemius, and by similar to 15% in the fat tissue. Trained SHR presented an increase in GLUT4 of similar to 21%, similar to 20%, and similar to 14%, in the same tissues, respectively. There were no differences between SHR and WKY rats in post-training GLUT4 expression. We conclude that training determined BP and insulin resistance reduction in SHR, and increased GLUT4 expression in both normotensive and hypertensive rats. However, considering the similar rise in GLUT4-induced training in SHR and WKY, it is possible that GLUT4 levels in plasma membrane fraction do not have a pivotal role in the exercise-induced improvement of insulin sensitivity in SHR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salivary gland dysfunction is a feature in diabetes and hypertension. We hypothesized that sodium-glucose cotransporter 1 (SGLT1) participates in salivary dysfunctions through a sympathetic- and protein kinase A (PKA)-mediated pathway. In Wistar-Kyoto (WKY), diabetic WKY (WKY-D), spontaneously hypertensive (SHR), and diabetic SHR (SHR-D) rats, PKA/SGLT1 proteins were analyzed in parotid and submandibular glands, and the sympathetic nerve activity (SNA) to the glands was monitored. Basal SNA was threefold higher in SHR (P < 0.001 vs. WKY), and diabetes decreased this activity (similar to 50%, P < 0.05) in both WKY and SHR. The catalytic subunit of PKA and the plasma membrane SGLT1 content in acinar cells were regulated in parallel to the SNA. Electrical stimulation of the sympathetic branch to salivary glands increased (similar to 30%, P < 0.05) PKA and SGLT1 expression. Immunohistochemical analysis confirmed the observed regulations of SGLT1, revealing its location in basolateral membrane of acinar cells. Taken together, our results show highly coordinated regulation of sympathetic activity upon PKA activity and plasma membrane SGLT1 content in salivary glands. Furthermore, the present findings show that diabetic- and/or hypertensive-induced changes in the sympathetic activity correlate with changes in SGLT1 expression in basolateral membrane of acinar cells, which can participate in the salivary glands dysfunctions reported by patients with these pathologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nucleus tractus solitarii (NTS), located in the brainstem, is one of the main nuclei responsible for integrating different signals in order to originate a specific and orchestrated autonomic response. Antihypertensive drugs are well known to stimulate alpha(2)-adrenoceptor (alpha(2R)) in brainstem cardiovascular regions to induce reduction in blood pressure. Because alpha(2R) impairment is present in several models of hypertension, the aim of the present study was to investigate the distribution and density of alpha(2R) binding within the NTS of Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats during development (1,15,30 and 90 day-old) by an in vitro autoradiographical study. The NTS shows heterogeneous distribution of alpha(2R) in dorsomedial/dorsolateral, subpostremal and medial/intermediate subnuclei. Alpha(2R) increased from rostral to caudal dorsomedial/dorsolateral subnuclei in 30 and 90 day-old SHR but not in WKY. Alpha(2R) decreased from rostral to caudal subpostremal subnucleus in 15, 30 and 90 day-old SHR but not in WKY. Medial/intermediate subnuclei did not show any changes in alpha(2R) according to NTS levels. Furthermore, alpha(2R) are decreased in SHR as compared with WKY in all NTS subnuclei and in different ages. Surprisingly, alpha(2R) impairment was also found in pre-hypertensive stages, specifically in subpostremal subnucleus of 15 day-old rats. Finally, alpha(2R) decrease from 1 to 90 day-old rats in all subnuclei analyzed. This decrease is different between strains in rostral dorsomedial/dorsolateral and caudal subpostremal subnuclei within the NTS. In summary, our results highlight the importance of alpha(2R) distribution within the NTS regarding the neural control of blood pressure and the development of hypertension. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The renin-angiotensin system plays a crucial role in the development and establishment of the hypertensive state in the spontaneously hypertensive (SH) rat. Interruption of this system's activity by pharmacological means results in the lowering of blood pressure (BP) and control of hypertension. However, such means are temporary and require the continuous use of drugs for the control of this pathophysiological state. Our objective in this investigation was to determine if a virally mediated gene-transfer approach using angiotensin type 1 receptor antisense (AT1R-AS) could be used to control hypertension on a long-term basis in the SH rat model of human essential hypertension. Injection of viral particles containing AT1R-AS (LNSV-AT1R-AS) in 5-day-old rats resulted in a lowering of BP exclusively in the SH rat and not in the Wistar Kyoto normotensive control. A maximal anti-hypertensive response of 33 +/- 5 mmHg was observed, was maintained throughout development, and still persisted 3 months after administration of LNSV-AT1R-AS. The lowering of BP was associated with the expression of AT1R-AS transcript and decreases in AT1-receptor in many peripheral angiotensin II target tissues such as mesenteric artery, adrenal gland, heart, and kidney. Attenuation of angiotensin II-stimulated physiological actions such as contraction of aortic rings and increase in BP was also observed in the LNSV-AT1R-AS-treated SH rat. These observations show that a single injection of LNSV-AT1R-AS normalizes BP in the SH rat on a long-term basis. They suggest that such a gene-transfer strategy can be successfully used to control the development of hypertension on a permanent basis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. The natriuretic peptide precursor A (Nppa) and B (Nppb) genes are candidate genes for hypertension and cardiac hypertrophy in the spontaneously hypertensive rat (SHR). The purpose of the present study was to determine the role of the Nppa and Nppb genes in the development of hypertension in the SHR. 2. A cohort (n = 162) of F2 segregating intercross animals was established between strains of hypertensive SHR and normotensive Wistar-Kyoto rats. Blood pressure and heart weight were measured in each rat at 12-16 weeks of age. Rats were genotyped using 11 informative microsatellite markers, distributed in the vicinity of the Nppa marker on rat chromosome 5 including an Nppb marker. The phenotype values were compared with genotype using the computer package MAP-MAKER 3.0 (Whitehead Institute, Boston, MA, USA) to determine whether there was a link between the genetic variants of the natriuretic peptide family and blood pressure or cardiac hypertrophy. 3. A strong correlation was observed between the Nppa marker and blood pressure. A quantitative trait locus (QTL) for blood pressure on chromosome 5 was identified between the Nppa locus and the D5Mgh15 marker, less than 2 cM from the Nppa locus. The linkage score for the blood pressure QTL on chromosome 5 was 3.8 and the QTL accounted for 43% of the total variance of systolic blood pressure, 54% of diastolic blood pressure and 59% of mean blood pressure. No association was found between the Nppb gene and blood pressure. This is the first report of linkage between the Nppa marker and blood pressure in the rat. There was no correlation between the Nppa or Nppb genes or other markers in this region and either heart weight or left ventricular weight in F2 rats. 4. These findings suggest the existence of a blood pressure-dependent Nppa marker variant or a gene close to Nppa predisposing to spontaneous hypertension in the rat. It provides a strong foundation for further detailed genetic studies in congenic strains, which may help to narrow down the location of this gene and lead to positional cloning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During pregnancy, the maternal cardiovascular system undergoes major adaptation. One of these changes is a 40-50 % increase in circulating blood volume which requires a systemic remodelling of the vasculature in order to regulate maternal blood pressure and maximise blood supply to the developing placenta and fetus. These changes are broadly conserved between humans and rats making them an appropriate pre-clinical model in which to study the underlying mechanisms of pregnancy-dependent cardiovascular remodelling. Whilst women are normally protected against cardiovascular disease; pregnancy marks a period of time where women are susceptible to cardiovascular complications. Cardiovascular disease is the leading cause of maternal mortality in the United Kingdom; in particular hypertensive conditions are among the most common complications of pregnancy. One of the main underlying pathologies of these pregnancy complications is thought to be a failure of the maternal cardiovascular system to adapt. The remodelling of the uterine arteries, which directly supply the maternal-fetal interface, is paramount to a healthy pregnancy. Failure of the uterine arteries to remodel sufficiently can result in a number of obstetric complications such as preeclampsia, fetal growth restriction and spontaneous pregnancy loss. At present, it is poorly understood whether this deficient vascular response is due to a predisposition from existing maternal cardiovascular risk factors, the physiological changes that occur during pregnancy or a combination of both. Previous work in our group employed the stroke prone spontaneously hypertensive rat (SHRSP) as a model to investigate pregnancy-dependent remodelling of the uterine arteries. The SHRSP develops hypertension from 6 weeks of age and can be contrasted with the control strain, the Wistar Kyoto (WKY) rat. The phenotype of the SHRSP is therefore reflective of the clinical situation of maternal chronic hypertension during pregnancy. We showed that the SHRSP exhibited a deficient uterine artery remodelling response with respect to both structure and function accompanied by a reduction in litter size relative to the WKY at gestational day (GD) 18. A previous intervention study using nifedipine in the SHRSP achieved successful blood pressure reduction from 6 weeks of age and throughout pregnancy; however uterine artery remodelling and litter size at GD18 was not improved. We concluded that the abnormal uterine artery remodelling present in the SHRSP was independent of chronic hypertension. From these findings, we hypothesised that the SHRSP could be a novel model of spontaneously deficient uterine artery remodelling in response to pregnancy which was underpinned by other as yet unidentified cardiovascular risk factors. In Chapter 1 of this thesis, I have characterised the maternal, placental and fetal phenotype in pregnant (GD18) SHRSP and WKY. The pregnant SHRSP exhibit features of left ventricular hypertrophy in response to pregnancy and altered expression of maternal plasma biomarkers which have been previously associated with hypertension in human pregnancy. I developed a protocol for accurate dissection of the rat uteroplacental unit using qPCR probes specific for each layer. This allowed me to make an accurate and specific statement about gene expression in the SHRSP GD18 placenta; where oxidative stress related gene markers were increased in the vascular compartments. The majority of SHRSP placenta presented at GD18 with a blackened ring which encircled the tissue. Further investigation of the placenta using western blot for caspase 3 cleavage determined that this was likely due to increased cell death in the SHRSP placenta. The SHRSP also presented with a loss of one particular placental cell type at GD18: the glycogen cells. These cells could have been the target of cell death in the SHRSP placenta or were utilised early in pregnancy as a source of energy due to the deficient uterine artery blood supply. Blastocyst implantation was not altered but resorption rate was increased between SHRSP and WKY; indicating that the reduction in litter size in the SHRSP was primarily due to late (>GD14) pregnancy loss. Fetal growth was not restricted in SHRSP which led to the conclusion that SHRSP sacrifice part of their litter to deliver a smaller number of healthier pups. Activation of the immune system is a common pathway that has been implicated in the development of both hypertension and adverse pregnancy outcome. In Chapter 2, I proposed that this may be a mechanism of interest in SHRSP pregnancy and measured the pro-inflammatory cytokine, TNFα, as a marker of inflammation in pregnant SHRSP and WKY and in the placentas from these animals. TNFα was up-regulated in maternal plasma and urine from the GD18 SHRSP. In addition, TNFα release was increased from the GD18 SHRSP placenta as was the expression of the pro-inflammatory TNFα receptor 1 (Tnfr1). In order to investigate whether this excess TNFα was detrimental to SHRSP pregnancy, a vehicle-controlled intervention study using etanercept (a monoclonal antibody which works as a TNFα antagonist) was carried out. Etanercept treatment at GD0, 6, 12 and 18 resulted in an improvement in pregnancy outcome in the SHRSP with an increased litter size and reduced resorption rate. Furthermore, there was an improved uterine artery function in GD18 SHRSP treated with etanercept which was associated with an improved uterine artery blood flow over the course of gestation. In Chapter 3, I sought to identify the source of this detrimental excess of TNFα by designing a panel for maternal leukocytes in the blood and placenta at GD18. A population of CD3- CD161+ cells, which are defined as rat natural killer (NK) cells, were increased in number in the SHRSP. Intracellular flow cytometry also identified this cell type as a source of excess TNFα in blood and placenta from pregnant SHRSP. I then went on to evaluate the effects of etanercept treatment on these CD3- CD161+ cells and showed that etanercept reduced the expression of CD161 and the cytotoxic molecule, granzyme B, in the NK cells. Thus, etanercept limits the cytotoxicity and potential damaging effect of these NK cells in the SHRSP placenta. Analysing the urinary peptidome has clinical potential to identify novel pathways involved with disease and/or to develop biomarker panels to aid and stratify diagnosis. In Chapter 4, I utilised the SHRSP as a pre-clinical model to identify novel urinary peptides associated with hypertensive pregnancy. Firstly, a characterisation study was carried out in the kidney of the WKY and SHRSP. Urine samples from WKY and SHRSP taken at pre-pregnancy, mid-pregnancy (GD12) and late pregnancy (GD18) were used in the peptidomic screen. In order to capture peptides which were markers of hypertensive pregnancy from the urinary peptidomic data, I focussed on those that were only changed in a strain dependent manner at GD12 and 18 and not pre-pregnancy. Peptide fragments from the uromodulin protein were identified from this analysis to be increased in pregnant SHRSP relative to pregnant WKY. This increase in uromodulin was validated at the SHRSP kidney level using qPCR. Uromodulin has previously been identified to be a candidate molecule involved in systemic arterial hypertension but not in hypertensive pregnancy thus is a promising target for further study. In summary, we have characterised the SHRSP as the first model of maternal chronic hypertension during pregnancy and identified that inflammation mediated by TNFα and NK cells plays a key role in the pathology. The evidence presented in this thesis establishes the SHRSP as a pre-clinical model for pregnancy research and can be continued into clinical studies in pregnant women with chronic hypertension which remains an area of unmet research need.