867 resultados para speaker clustering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We uncover the global organization of clustering in real complex networks. To this end, we ask whether triangles in real networks organize as in maximally random graphs with given degree and clustering distributions, or as in maximally ordered graph models where triangles are forced into modules. The answer comes by way of exploring m-core landscapes, where the m-core is defined, akin to the k-core, as the maximal subgraph with edges participating in at least m triangles. This property defines a set of nested subgraphs that, contrarily to k-cores, is able to distinguish between hierarchical and modular architectures. We find that the clustering organization in real networks is neither completely random nor ordered although, surprisingly, it is more random than modular. This supports the idea that the structure of real networks may in fact be the outcome of self-organized processes based on local optimization rules, in contrast to global optimization principles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

General clustering deals with weighted objects and fuzzy memberships. We investigate the group- or object-aggregation-invariance properties possessed by the relevant functionals (effective number of groups or objects, centroids, dispersion, mutual object-group information, etc.). The classical squared Euclidean case can be generalized to non-Euclidean distances, as well as to non-linear transformations of the memberships, yielding the c-means clustering algorithm as well as two presumably new procedures, the convex and pairwise convex clustering. Cluster stability and aggregation-invariance of the optimal memberships associated to the various clustering schemes are examined as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most hematopoietic stem cells (HSC) in the bone marrow reside in a quiescent state and occasionally enter the cell cycle upon cytokine-induced activation. Although the mechanisms regulating HSC quiescence and activation remain poorly defined, recent studies have revealed a role of lipid raft clustering (LRC) in HSC activation. Here, we tested the hypothesis that changes in lipid raft distribution could serve as an indicator of the quiescent and activated state of HSCs in response to putative niche signals. A semi-automated image analysis tool was developed to map the presence or absence of lipid raft clusters in live HSCs cultured for just one hour in serum-free medium supplemented with stem cell factor (SCF). By screening the ability of 19 protein candidates to alter lipid raft dynamics, we identified six factors that induced either a marked decrease (Wnt5a, Wnt3a and Osteopontin) or increase (IL3, IL6 and VEGF) in LRC. Cell cycle kinetics of single HSCs exposed to these factors revealed a correlation of LRC dynamics and proliferation kinetics: factors that decreased LRC slowed down cell cycle kinetics, while factors that increased LRC led to faster and more synchronous cycling. The possibility of identifying, by LRC analysis at very early time points, whether a stem cell is activated and possibly committed upon exposure to a signaling cue of interest could open up new avenues for large-scale screening efforts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zonal management in vineyards requires the prior delineation of stable yield zones within the parcel. Among the different methodologies used for zone delineation, cluster analysis of yield data from several years is one of the possibilities cited in scientific literature. However, there exist reasonable doubts concerning the cluster algorithm to be used and the number of zones that have to be delineated within a field. In this paper two different cluster algorithms have been compared (k-means and fuzzy c-means) using the grape yield data corresponding to three successive years (2002, 2003 and 2004), for a ‘Pinot Noir’ vineyard parcel. Final choice of the most recommendable algorithm has been linked to obtaining a stable pattern of spatial yield distribution and to allowing for the delineation of compact and average sized areas. The general recommendation is to use reclassified maps of two clusters or yield classes (low yield zone and high yield zone) and, consequently, the site-specific vineyard management should be based on the prior delineation of just two different zones or sub-parcels. The two tested algorithms are good options for this purpose. However, the fuzzy c-means algorithm allows for a better zoning of the parcel, forming more compact areas and with more equilibrated zonal differences over time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose the inversion of nonlinear distortions in order to improve the recognition rates of a speaker recognizer system. We study the effect of saturations on the test signals, trying to take into account real situations where the training material has been recorded in a controlled situation but the testing signals present some mismatch with the input signal level (saturations). The experimental results shows that a combination of several strategies can improve the recognition rates with saturated test sentences from 80% to 89.39%, while the results with clean speech (without saturation) is 87.76% for one microphone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: According to estimations around 230 people die as a result of radon exposure in Switzerland. This public health concern makes reliable indoor radon prediction and mapping methods necessary in order to improve risk communication to the public. The aim of this study was to develop an automated method to classify lithological units according to their radon characteristics and to develop mapping and predictive tools in order to improve local radon prediction. METHOD: About 240 000 indoor radon concentration (IRC) measurements in about 150 000 buildings were available for our analysis. The automated classification of lithological units was based on k-medoids clustering via pair-wise Kolmogorov distances between IRC distributions of lithological units. For IRC mapping and prediction we used random forests and Bayesian additive regression trees (BART). RESULTS: The automated classification groups lithological units well in terms of their IRC characteristics. Especially the IRC differences in metamorphic rocks like gneiss are well revealed by this method. The maps produced by random forests soundly represent the regional difference of IRCs in Switzerland and improve the spatial detail compared to existing approaches. We could explain 33% of the variations in IRC data with random forests. Additionally, the influence of a variable evaluated by random forests shows that building characteristics are less important predictors for IRCs than spatial/geological influences. BART could explain 29% of IRC variability and produced maps that indicate the prediction uncertainty. CONCLUSION: Ensemble regression trees are a powerful tool to model and understand the multidimensional influences on IRCs. Automatic clustering of lithological units complements this method by facilitating the interpretation of radon properties of rock types. This study provides an important element for radon risk communication. Future approaches should consider taking into account further variables like soil gas radon measurements as well as more detailed geological information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this study is to assess the potential of the information technology industry in the Saint Petersburg area to become one of the new key industries in the Russian economy. To achieve this objective, the study analyzes especially the international competitiveness of the industry and the conditions for clustering. Russia is currently heavily dependent on its natural resources, which are the main source of its recent economic growth. In order to achieve good long-term economic performance, Russia needs diversification in its well-performing industries in addition to the ones operating in the field of natural resources. The Russian government has acknowledged this and started special initiatives to promote such other industries as information technology and nanotechnology. An interesting industry that is basically less than 20 years old and fast growing in Russia, is information technology. Information technology activities and markets are mainly concentrated in Russia’s two biggest cities, Moscow and Saint Petersburg, and areas around them. The information technology industry in the Saint Petersburg area, although smaller than Moscow, is especially dynamic and is gaining increasing foreign company presence. However, the industry is not yet internationally competitive as it lacks substantial and sustainable competitive advantages. The industry is also merely a potential global information technology cluster, as it lacks the competitive edge and a wide supplier and manufacturing base and other related parts of the whole information technology value system. Alone, the industry will not become a key industry in Russia, but it will, on the other hand, have an important supporting role for the development of other industries. The information technology market in the Saint Petersburg area is already large and if more tightly integrated to Moscow, they will together form a huge and still growing market sufficient for most companies operating in Russia currently and in the future. Therefore, the potential of information technology inside Russia is immense.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of rockfall characteristics and spatial distribution is fundamental to understand and model the main factors that predispose to failure. In our study we analysed LiDAR point clouds aiming to: (1) detect and characterise single rockfalls; (2) investigate their spatial distribution. To this end, different cluster algorithms were applied: 1a) Nearest Neighbour Clutter Removal (NNCR) in combination with the Expectation?Maximization (EM) in order to separate feature points from clutter; 1b) a density based algorithm (DBSCAN) was applied to isolate the single clusters (i.e. the rockfall events); 2) finally we computed the Ripley's K-function to investigate the global spatial pattern of the extracted rockfalls. The method allowed proper identification and characterization of more than 600 rockfalls occurred on a cliff located in Puigcercos (Catalonia, Spain) during a time span of six months. The spatial distribution of these events proved that rockfall were clustered distributed at a welldefined distance-range. Computations were carried out using R free software for statistical computing and graphics. The understanding of the spatial distribution of precursory rockfalls may shed light on the forecasting of future failures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this study is to assess the potential of the information technology industry in the Saint Petersburg area to become one of the new key industries in the Russian economy. To achieve this objective, the study analyzes especially the international competitiveness of the industry and the conditions for clustering. Russia is currently heavily dependent on its natural resources, which are the main source of its recent economic growth. In order to achieve good long-term economic performance, Russia needs diversification in its well-performing industries in addition to the ones operating in the field of natural resources. The Russian government has acknowledged this and started special initiatives to promote such other industries as information technology and nanotechnology. An interesting industry that is basically less than 20 years old and fast growing in Russia, is information technology. Information technology activities and markets are mainly concentrated in Russia’s two biggest cities, Moscow and Saint Petersburg, and areas around them. The information technology industry in the Saint Petersburg area, although smaller than Moscow, is especially dynamic and is gaining increasing foreign company presence. However, the industry is not yet internationally competitive as it lacks substantial and sustainable competitive advantages. The industry is also merely a potential global information technology cluster, as it lacks the competitive edge and a wide supplier and manufacturing base and other related parts of the whole information technology value system. Alone, the industry will not become a key industry in Russia, but it will, on the other hand, have an important supporting role for the development of other industries. The information technology market in the Saint Petersburg area is already large and if more tightly integrated to Moscow, they will together form a huge and still growing market sufficient for most companies operating in Russia currently and in the future. Therefore, the potential of information technology inside Russia is immense.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peer-reviewed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the major problems in machine vision is the segmentation of images of natural scenes. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. The main contours of the scene are detected and used to guide the posterior region growing process. The algorithm places a number of seeds at both sides of a contour allowing stating a set of concurrent growing processes. A previous analysis of the seeds permits to adjust the homogeneity criterion to the regions's characteristics. A new homogeneity criterion based on clustering analysis and convex hull construction is proposed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clustering soil and crop data can be used as a basis for the definition of management zones because the data are grouped into clusters based on the similar interaction of these variables. Therefore, the objective of this study was to identify management zones using fuzzy c-means clustering analysis based on the spatial and temporal variability of soil attributes and corn yield. The study site (18 by 250-m in size) was located in Jaboticabal, São Paulo/Brazil. Corn yield was measured in one hundred 4.5 by 10-m cells along four parallel transects (25 observations per transect) over five growing seasons between 2001 and 2010. Soil chemical and physical attributes were measured. SAS procedure MIXED was used to identify which variable(s) most influenced the spatial variability of corn yield over the five study years. Basis saturation (BS) was the variable that better related to corn yield, thus, semivariograms models were fitted for BS and corn yield and then, data values were krigged. Management Zone Analyst software was used to carry out the fuzzy c-means clustering algorithm. The optimum number of management zones can change over time, as well as the degree of agreement between the BS and corn yield management zone maps. Thus, it is very important take into account the temporal variability of crop yield and soil attributes to delineate management zones accurately.