991 resultados para solid lipid nanoparticle
Resumo:
The melting temperature and the crystallization temperature of Bi nanoclusters confined in a sodium borate glass were experimentally determined as functions of the cluster radius. The results indicate that, on cooling, liquid Bi nanodroplets exhibit a strong undercooling effect for a wide range of radii. The difference between the melting temperature and the freezing temperature decreases for decreasing radius and vanishes for Bi nanoparticles with a critical radius R = 1.9 nm. The magnitude of the variation in density across the melting and freezing transitions for Bi nanoparticles with R = 2 nm is 40% smaller than for bulk Bi. These experimental results support a basic core-shell model for the structure of Bi nanocrystals consisting of a central crystalline volume surrounded by a structurally disordered shell. The volume fraction of the crystalline core decreases for decreasing nanoparticle radius and vanishes for R = 1.9 nm. Thus, on cooling, the liquid nanodroplets with R < 1.9 nm preserve, across the liquid-to-solid transformation, their homogeneous and disordered structure without crystalline core.
Resumo:
The crystal structure and the local atomic order of a series of nanocrystalline ZrO(2)-CaO solid solutions with varying CaO content were studied by synchrotron radiation X-ray powder diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy. These samples were synthesized by a pH-controlled nitrate-glycine gel-combustion process. For CaO contents up to 8 mol%, the t' form of the tetragonal phase (c/a > 1) was identified, whereas for 10 and 12 mol% CaO, the t '' form (c/a=1; oxygen anions displaced from their ideal positions in the cubic phase) was detected. Finally, the cubic phase was observed for solid solutions with CaO content of 14 mol% CaO or higher. The t'/t '' and t ''/cubic compositional boundaries were determined to be at 9 (1) and 13 (1) mol% CaO, respectively. The EXAFS study demonstrated that this transition is related to a tetragonal-to-cubic symmetry change of the first oxygen coordination shell around the Zr atoms.
Resumo:
Crystal structure of compositionally homogeneous, nanocrystalline ZrO2-CeO2 solutions was investigated by X-ray powder diffraction as a function of temperature for compositions between 50 and 65 mol % CeO2 center dot ZrO2-50 and 60 mol % CeO2 solid solutions, which exhibit the t'-form of the tetragonal phase at room temperature, transform into the cubic phase in two steps: t'-to-t '' followed by t ''-to-cubic. But the ZrO2-65 mol % CeO2, which exhibits the t ''-form, transforms directly to the cubic phase. The results suggest that t'-to-t '' transition is of first order, but t ''-to-cubic seems to be of second order. (C) 2008 International Centre for Diffraction Data.
Resumo:
The transition between tetragonal and cubic phases in nanostructured ZrO2-Sc2O3 solid solutions by high-temperature X-ray powder diffraction using synchrotron radiation is presented. ZrO2-8 and 11 mol% Sc2O3 nanopowders that exhibit the t'- and t ''-forms of the tetragonal phase, respectively, were synthesized by a stoichiometric nitrate-lysine gel-combustion route. The average crystallite size treated at 900 degrees C was about 25 nm for both compositions. Our results showed that t'-t '' and t ''-cubic transitions take place for the 8 and 11 mol% Sc2O3 samples, respectively. (C) 2008 International Centre for Diffraction Data.
Resumo:
The structure of a complex between hydrated DNA and a non-cationic lipid is studied, including its phase diagram. The complex is spontaneously formed by adding DNA fragments (ca. 150 base pairs in length) to non-cationic lipids and water. The self-assembly process often leads to highly ordered structures. The structures were studied by combining X-ray scattering, fluorescence and polarized microscopy, as well as freeze-fracture experiments with transmission electron microscopy. We observe a significant increase of the smectic order as DNA is incorporated into the water layers of the lamellar host phase, and stabilization of single phase domains for large amounts of DNA. The effect of confinement on DNA ordering is investigated by varying the water content, following three dilution lines. A rich polymorphism is found, ranging from weakly correlated DNA-DNA in-plane organizations to highly ordered structures, where transmembrane correlations lead to the formation of columnar rectangular and columnar hexagonal superlattices of nucleotides embedded between lipid lamellae. From these observations, we suggest that addition of DNA to the lamellar phase significantly restricts membrane fluctuations above a certain concentration and helps the formation of the lipoplex. The alteration of membrane steric interactions, together with the appearance of interfacial interactions between membranes and DNA molecules may be a relevant mechanism for the emergence of highly ordered structures in the concentrated regime.
Resumo:
We propose a statistical model to account for the gel-fluid anomalous phase transitions in charged bilayer- or lamellae-forming ionic lipids. The model Hamiltonian comprises effective attractive interactions to describe neutral-lipid membranes as well as the effect of electrostatic repulsions of the discrete ionic charges on the lipid headgroups. The latter can be counterion dissociated (charged) or counterion associated (neutral), while the lipid acyl chains may be in gel (low-temperature or high-lateral-pressure) or fluid (high-temperature or low-lateral-pressure) states. The system is modeled as a lattice gas with two distinct particle types-each one associated, respectively, with the polar-headgroup and the acyl-chain states-which can be mapped onto an Ashkin-Teller model with the inclusion of cubic terms. The model displays a rich thermodynamic behavior in terms of the chemical potential of counterions (related to added salt concentration) and lateral pressure. In particular, we show the existence of semidissociated thermodynamic phases related to the onset of charge order in the system. This type of order stems from spatially ordered counterion association to the lipid headgroups, in which charged and neutral lipids alternate in a checkerboard-like order. Within the mean-field approximation, we predict that the acyl-chain order-disorder transition is discontinuous, with the first-order line ending at a critical point, as in the neutral case. Moreover, the charge order gives rise to continuous transitions, with the associated second-order lines joining the aforementioned first-order line at critical end points. We explore the thermodynamic behavior of some physical quantities, like the specific heat at constant lateral pressure and the degree of ionization, associated with the fraction of charged lipid headgroups.
Resumo:
In this report, the application of a class of separated local field NMR experiments named dipolar chemical shift correlation (DIPSHIFT) for probing motions in the intermediate regime is discussed. Simple analytical procedures based on the Anderson-Weiss (AW) approximation are presented. In order to establish limits of validity of the AW based formulas, a comparison with spin dynamics simulations based on the solution of the stochastic Liouville-von-Neumann equation is presented. It is shown that at short evolution times (less than 30% of the rotor period), the AW based formulas are suitable for fitting the DIPSHIFT curves and extracting kinetic parameters even in the case of jumplike motions. However, full spin dynamics simulations provide a more reliable treatment and extend the frequency range of the molecular motions accessible by DIPSHIFT experiments. As an experimental test, molecular jumps of imidazol methyl sulfonate and trimethylsulfoxonium iodide, as well as the side-chain motions in the photoluminescent polymer poly[2-methoxy-5-(2(')-ethylhexyloxy)-1,4-phenylenevinylene], were characterized. Possible extensions are also discussed. (c) 2008 American Institute of Physics.
Resumo:
The present work shows study of the CO(2) capture by amidines DBN and PMDBD using (13)C solid-state NMR and thermal techniques. The solid state (13)C NMR analyses demonstrate the formation of a single PMDBD-CO(2) product which was assigned to stable bicarbonate. In the case of DBN, it is shown that two DBN-CO(2) products are formed, which are suggested to be stable bicarbonate and unstable carbamate. The role of water in the DBN-CO(2) capture as well as the stability of the products to environmental moisture was also investigated. The results suggest that the carbamate formation is favored in dry DBN, but in the presence of water it decompose to form bicarbonate. Thermal analysis shows a good gravimetric CO(2) absorption of DBN. Release of CO(2) was found to be almost quantitative from the PMDBDH(+) bicarbonate about 110 degrees C.
Resumo:
First-principles density-functional theory studies have reported open structures based on the formation of double simple-cubic (DSC) arrangements for Ru(13), Rh(13), Os(13), and Ir(13), which can be considered an unexpected result as those elements crystallize in compact bulk structures such as the face-centered cubic and hexagonal close-packed lattices. In this work, we investigated with the projected augmented wave method the dependence of the lowest-energy structure on the local and semilocal exchange-correlation (xc) energy functionals employed in density-functional theory. We found that the local-density approximation (LDA) and generalized-gradient formulations with different treatment of the electronic inhomogeneities (PBE, PBEsol, and AM05) confirm the DSC configuration as the lowest-energy structure for the studied TM(13) clusters. A good agreement in the relative total energies are obtained even for structures with small energy differences, e. g., 0.10 eV. The employed xc functionals yield the same total magnetic moment for a given structure, i.e., the differences in the bond lengths do not affect the moments, which can be attributed to the atomic character of those clusters. Thus, at least for those systems, the differences among the LDA, PBE, PBEsol, and AM05 functionals are not large enough to yield qualitatively different results. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3577999]
Resumo:
This paper describes methods for the direct determination of Cd and Pb in hair segments (c.a. 5 mm similar to 80 mu g) by solid sampling graphite furnace atomic absorption spectrometry, becoming possible longitudinal profiles in a single strand of hair. To distinguish endogenous and exogenous content. strands of hair were washed by using two different procedures: IAEA protocol (acetone + water + acetone) and the combination of IAEA protocol with HCl washing (acetone + water + acetone + 0.1 mol l(-1) HCl). The concentration of Cd and Pb increased from the root Until the tip of hair washed according to IAEA protocol. However, when the strand of hair was washed using the combination of IAEA protocol and 0.1 mol l(-1) HCl, Cd concentrations decreased in all segments, and Pb concentrations decreased drastically near to the root (5 to 12 mm) and was systematically higher ill the end. The proposed method showed to be useful to assess the temporal variation to Cd and Pb exposure and call be Used for toxicological and environmental investigations. The limits of detection were 2.8 ng g(-1) for Cd and 40 ng g(-1) for Pb. The characteristic masses based oil integrated absorbance were 2.4 pg for Cd and 22 pg for Pb.
Resumo:
A novel solid phase extraction technique is described where DNA is bound and eluted from magnetic silica beads in a manner where efficiency is dependent on the magnetic manipulation of the beads and not on the flow of solution through a packed bed. The utility of this technique in the isolation of reasonably pure, PCR-amplifiable DNA from complex samples is shown by isolating DNA from whole human blood, and subsequently amplifying a fragment of the beta-globin gene. By effectively controlling the movement of the solid phase in the presence of a static sample, the issues associated with reproducibly packing a solid phase in a microchannel and maintaining consistent flow rates are eliminated. The technique described here is rapid, simple, and efficient, allowing for recovery of more than 60% of DNA from 0.6 mu L of blood at a concentration which is suitable for PCR amplification. In addition, the technique presented here requires inexpensive, common laboratory equipment, making it easily adopted for both clinical point-of-care applications and on-site forensic sample analysis.
Resumo:
Measurements based on absorption, reflectance, or luminescence of molecular species or complex ions can be carried out directly on a solid support simultaneously to the retention of the analyte. The use of this strategy in flow-based systems is advantageous in view of the reproducible handling of solutions in retention and elution steps of the analyte. This approach can be exploited to increase sensitivity, minimize reagent consumption as well as waste generation, improve selectivity or for simultaneous determination based on selective retention or differences in sorption rates of the analytes. This review focuses on the main characteristics of direct solid-phase measurements in flow systems, including the discussion of advantages and limitations and practical guidelines to the successful implementation of this approach. Selected applications in diverse fields, such as pharmaceutical, food, and environmental analysis are discussed.
Resumo:
An approach was developed for the preparation of cryogenic ground spiked filter papers with Cu and Zn for use as synthetic calibrating standards for direct solid microanalysis. Solid sampling graphite furnace atomic absorption spectrometry was used to evaluate the microhomogeneity and to check the applicability of the synthetic calibrating standards for the direct determination of Cu and Zn in vegetable certified reference materials. The found concentrations presented no statistical differences at the 95% confidence level. The homogeneity factors ranged from 2.7 to 4.2 for Cu and from 6.4 to 11.5 for Zn.
Resumo:
Aim. It has been demonstrated that branched-chain amino acids (BCAA) transaminase activation occurs simultaneously with exercise-induced muscle glycogen reduction, suggesting that BCAA supplementation might play an energetic role in this condition. This study aimed to test whether BCAA supplementation enhances exercise capacity and lipid oxidation in glycogen-depleted subjects. Methods. Using a double-blind cross-over design, volunteers (N.=7) were randomly assigned to either the BCAA (300 mg . kg . day (-1)) or the placebo (maltodextrine) for 3 days. On the second day, subjects were submitted to an exercise-induced glycogen depletion protocol. They then performed an exhaustive exercise test on the third day, after which time to exhaustion, respiratory exchange ratio (RER), plasma glucose, free fatty acids (HA), blood ketones and lactate were determined. BCAA supplementation promoted a greater resistance to fatigue when compared to the placebo (+17.2%). Moreover, subjects supplemented with BCAA showed reduced RER and higher plasma glucose levels during the exhaustive exercise test. Results. No significant differences appeared in FFA, blood ketones and lactate concentrations. Conclusion. In conclusion, BCAA supplementation increases resistance to fatigue and enhances lipid oxidation during exercise in glycogen-depleted subjects.
Resumo:
Research of advanced technologies for energy generation contemplates a series of alternatives that are introduced both in the investigation of new energy sources and in the improvement and/or development of new components and systems. Even though significant reductions are observed in the amount of emissions, the proposed alternatives require the use of exhaust gases cleaning systems. The results of environmental analyses based on two configurations proposed for urban waste incineration are presented in this paper; the annexation of integer (Boolean) variables to the environomic model makes it possible to define the best gas cleaning routes based on exergetic cost minimisation criteria. In this first part, the results for steam cogeneration system analysis associated with the incineration of municipal solid wastes (MSW) is presented. (c) 2007 Elsevier Ltd. All rights reserved.