981 resultados para soil carbon pool
Resumo:
The growth of Eucalyptus stands varies several fold across sites, under the influence of resource availability, stand age and stand structure. We describe a series of related studies that aim to understand the mechanisms that drive this great range in stand growth rates. In a seven-year study in Hawaii of Eucalyptus saligna at a site that was not water limited, we showed that nutrient availability differences led to a two-fold difference in stand wood production. Increasing nutrient supply in mid-rotation raised productivity to the level attained in continuously fertilised plots. Fertility affected the age-related decline in wood and foliage production; production in the intensive fertility treatments declined more slowly than in the minimal fertility treatments. The decline in stem production was driven largely by a decline in canopy photosynthesis. Over time, the fraction of canopy photosynthesis partitioned to below-ground allocation increased, as did foliar respiration, further reducing wood production. The reason for the decline in photosynthesis was uncertain, but it was not caused by nutrient limitation, a decline in leaf area or in photosynthetic capacity, or by hydraulic limitation. Most of the increase in carbon stored from conversion of the sugarcane plantation to Eucalyptus plantation was in the above-ground woody biomass. Soil carbon showed no net change. This study and other studies on carbon allocation showed that resource availability changes the fraction of annual photosynthesis used below-ground and for wood production. High resources (nutrition or water) decrease the partitioning below-ground and increase partitioning to wood production. Annual foliage and wood respiration and foliage production as a fraction of annual photosynthesis was remarkably constant across a wide range of fertility treatments and forest age. In the Brazil Eucalyptus Productivity Project, stand structure was manipulated by planting clonal Eucalyptus all at once or in three groups at three-monthly intervals, producing a stand where trees did not segregate into dominants and one that had strong dominance. The uneven stand structure reduced production 10-15% throughout the rotation.
Resumo:
ABSTRACT Soils of tropical regions are more weathered and in need of conservation managements to maintain and improve the quality of its components. The objective of this study was to evaluate the availability of K, the organic matter content and the stock of total carbon of an Argisol after vinasse application and manual and mechanized harvesting of burnt and raw sugarcane, in western São Paulo.The data collection was done in the 2012/2013 harvest, in a bioenergy company in Presidente Prudente/SP. The research was arranged out following a split-plot scheme in a 5x5 factorial design, characterized by four management systems: without vinasse application and harvest without burning; with vinasse application and harvest without burning; with vinasse application and harvest after burning; without vinasse application and harvest after burning; plus native forest, and five soil sampling depths (0-10 10-20, 20-30, 30-40, 40-50 cm), with four replications. In each treatment, the K content in the soil and accumulated in the remaining dry biomass in the area, the levels of organic matter, organic carbon and soil carbon stock were determined. The mean values were compared by Tukey test. The vinasse application associated with the harvest without burning increased the K content in soil layers up to 40 cm deep. The managements without vinasse application and manual harvest after burning, and without vinasse application with mechanical harvesting without burning did not increase the levels of organic matter, organic carbon and stock of total soil organic carbon, while the vinasse application and harvest after burning and without burning increased the levels of these attributes in the depth of 0-10 cm.
Resumo:
Fertility properties, total C (Ctot), and chemical soil organic matter fractions (fulvic acid fraction - FA, humic acid fraction - HA, humin fraction - H) of anthropogenic dark earths (Terra Preta de Índio) of the Amazon basin were compared with those of Ferralsols with no anthropogenic A horizon. Terra Preta soils had a higher fertility (pH: 5.1-5.4; Sum of bases, SB: 8.93-10.33 cmol c kg-1 , CEC: 17.2-17.5 cmol c kg-1 , V: 51-59 %, P: 116-291 mg kg-1) and Ctot (44.6-44.7 g kg-1) than adjacent Ferralsols (pH: 4.4; SB: 2.04 cmol c kg-1, CEC: 9.5 cmol c kg-1, V: 21 %, P 5 mg kg-1, C: 37.9 g kg-1). The C distribution among humic substance fractions (FA, HA, H) in Terra Preta soils was also different, as shown by the ratios HA:FA and EA/H (EA=HA+FA) (2.1-3.0 and 1.06-1.08 for Terra Preta and 1.2 and 0.72 for Ferralsols, respectively). While the cation exchange capacity (CEC), of Ferralsols correlated with FA (r = 0.97), the CEC of Terra Preta correlated with H (r = 0.82). The correlation of the fertility of Terra Preta with the highly stable soil organic matter fraction (H) is highly significant for the development of sustainable soil fertility management models in tropical ecosystems.
Resumo:
Soil plays an important role in the C cycle, and substitution of tropical forest by cultivated land affects C dynamic and stock. This study was developed in an area of expansion of human settlement in the Eastern Amazon, in Itupiranga, State of Pará, to evaluate the effects of native forest conversion to Brachiaria brizantha pasture on C contents of a dystrophic Oxisol. Soil samples were collected in areas of native forest (NF), of 8 to 10 year old secondary forest (SF), 1 to 2 year old SF (P1-2), 5 to 7 year old SF (P5-7), and of 10 to 12 year old SF (P10-12), and from under pastures, in the layers 0-2, 2-5 and 5-10 cm, to evaluate C levels and stocks and carry out separation of OM based on particle size. After deforestation, soil density increased to a depth of 5 cm, with greater increase in older pastures. Variation in C levels was greatest in the top soil layer; C contents increased with increasing pasture age. In the layers 2-5 and 5-10 cm, C content proved to be stable for the types of plant cover evaluated. Highest C concentrations were found in the silt fraction; however, C contents were highest in the clay fraction, independent of the plant cover. An increase in C associated with the sand fraction in the form of little decomposed organic residues was observed in pastures, confirming greater sensitivity of this fraction to change in soil use.
Resumo:
An understanding of the role of organic nitrogen (N) pools in the N supply of eucalyptus plantations is essential for the development of strategies that maximize the efficient use of N for this crop. This study aimed to evaluate the distribution of organic N pools in different compartments of the soil-plant system and their contributions to the N supply in eucalyptus plantations at different ages (1, 3, 5, and 13 years). Three models were used to estimate the contributions of organic pools: Model I considered N pools contained in the litterfall, N pools in the soil microbial biomass and available soil N (mineral N); Model II considered the N pools in the soil, potentially mineralizable N and the export of N through wood harvesting; and Model III (N balance) was defined as the difference between the initial soil N pool (0-10 cm) and the export of N, taking the application of N fertilizer into account. Model I showed that N pools could supply 27 - 70 % of the N demands of eucalyptus trees at different ages. Model II suggested that the soil N pool may be sufficient for 4 - 5 rotations of 5 years. According to the N balance, these N pools would be sufficient to meet the N demands of eucalyptus for more than 15 rotations of 5 years. The organic pools contribute with different levels of N and together are sufficient to meet the N demands of eucalyptus for several rotations.
Physical properties and particle-size fractions of soil organic matter in crop-livestock integration
Resumo:
Crop-livestock integration represents an interesting alternative of soil management, especially in regions where the maintenance of cover crops in no-tillage systems is difficult. The objective of this study was to evaluate soil physical and chemical properties, based on the hypothesis that a well-managed crop-livestock integration system improves the soil quality and stabilizes the system. The experiment was set up in a completely randomized design, with five replications. The treatments were arranged in a 6 x 4 factorial design, to assess five crop rotation systems in crop-livestock integration, and native forest as reference of soil undisturbed by agriculture, in four layers (0.0-0.05; 0.05-0.10; 0.10-0.15 and 0.15-0.20 m). The crop rotation systems in crop-livestock integration promoted changes in soil physical and chemical properties and the effects of the different systems were mainly detected in the surface layer. The crops in integrated crop-livestock systems allowed the maintenance of soil carbon at levels equal to those of the native forest, proving the efficiency of these systems in terms of soil conservation. The systems influenced the environmental stability positively; the soil quality indicator mineral-associated organic matter was best related to aggregate stability.
Resumo:
Soil physical quality is an important factor for the sustainability of agricultural systems. Thus, the aim of this study was to evaluate soil physical properties and soil organic carbon in a Typic Acrudox under an integrated crop-livestock-forest system. The experiment was carried out in Mato Grosso do Sul, Brazil. Treatments consisted of seven systems: integrated crop-livestock-forest, with 357 trees ha-1 and pasture height of 30 cm (CLF357-30); integrated crop-livestock-forest with 357 trees ha-1 and pasture height of 45 cm (CLF357-45); integrated crop-livestock-forest with 227 trees ha-1 and pasture height of 30 cm (CLF227-30); integrated crop-livestock-forest with 227 trees ha-1 and pasture height of 45 cm (CLF227-45); integrated crop-livestock with pasture height of 30 cm (CL30); integrated crop-livestock with pasture height of 45 cm (CL45) and native vegetation (NV). Soil properties were evaluated for the depths of 0-10 and 10-20 cm. All grazing treatments increased bulk density (r b) and penetration resistance (PR), and decreased total porosity (¦t) and macroporosity (¦ma), compared to NV. The values of r b (1.18-1.47 Mg m-3), ¦ma (0.14-0.17 m³ m-3) and PR (0.62-0.81 MPa) at the 0-10 cm depth were not restrictive to plant growth. The change in land use from NV to CL or CLF decreased soil organic carbon (SOC) and the soil organic carbon pool (SOCpool). All grazing treatments had a similar SOCpool at the 0-10 cm depth and were lower than that for NV (17.58 Mg ha-1).
Resumo:
Under field conditions in the Amazon forest, soil bulk density is difficult to measure. Rigorous methodological criteria must be applied to obtain reliable inventories of C stocks and soil nutrients, making this process expensive and sometimes unfeasible. This study aimed to generate models to estimate soil bulk density based on parameters that can be easily and reliably measured in the field and that are available in many soil-related inventories. Stepwise regression models to predict bulk density were developed using data on soil C content, clay content and pH in water from 140 permanent plots in terra firme (upland) forests near Manaus, Amazonas State, Brazil. The model results were interpreted according to the coefficient of determination (R2) and Akaike information criterion (AIC) and were validated with a dataset consisting of 125 plots different from those used to generate the models. The model with best performance in estimating soil bulk density under the conditions of this study included clay content and pH in water as independent variables and had R2 = 0.73 and AIC = -250.29. The performance of this model for predicting soil density was compared with that of models from the literature. The results showed that the locally calibrated equation was the most accurate for estimating soil bulk density for upland forests in the Manaus region.
Resumo:
Key Points: • Iowa’s exceptional agricultural productivity is dependent upon nutrient‐rich soils with high carbon and nitrogen stocks. • Soil carbon and nitrogen stocks in Iowa corn‐soybean rotations are at significant risk of long‐term decline. • Soil carbon and nitrogen stocks are a function of crop residue inputs. • Nutrient input levels that do not maximize crop yield and residue production are likely to reduce soil carbon and nitrogen stocks. • If soil carbon and nitrogen stocks decline, water quality improvements become more difficult. • Soil carbon and nitrogen balances are extremely difficult to measure, but positive balances are essential to the future of Iowa agriculture. Recommended Actions: • Accurate measurement of soil carbon and nitrogen balances is exceptionally difficult, but can be accomplished with sufficient investment and long‐term planning. • The ideal approach will include a combination of measurements from farms and experimental networks that manipulate nutrient inputs. • With proper planning and cooperation, Iowa State University and the Iowa Department of Agriculture and Land Stewardship can address the concerns raised in this report regarding the future of Iowa’s soil resource and agricultural productivity.
Resumo:
The objective of this work was to determine the contribution of dissolved organic carbon (DOC) from a biochar mineral complex (BMC), so as to better understand the interactions between DOC, biochar, clay, and minerals during thermal treatment, and the effects of BMC on amended soils. The BMC was prepared by heating a mixture of a H3PO4-treated saligna biochar from Acacia saligna, clays, other minerals, and chicken manure. The BMC was applied to a sandy loam soil in Western Australia, where wheat was grown. Liquid chromatography-organic carbon detection (LC-OCD) tests were carried out on water extracts from the untreated biochar, the BMC, the BMC-amended soil, and on a control soil to measure the DOC concentration. LC-OCD tests provide a fingerprint of the DOC, which allows the fractions of DOC to be determined. Thermal processing enhanced the reaction of the A. saligna biochar with manure, clays and minerals, and affected the distribution of the DOC fractions. Notably, the process leads to immobilization of hydrophobic DOC and to an increase in the concentration of low-molecular-weight neutrals in the BMC. The application of the BMC to soil increases the DOC in the amended soil, especially the biopolymer fraction.
Resumo:
Selective papers of the workshop on "Development of models and forest soil surveys for monitoring of soil carbon", Koli, Finland, April 5-9 2006.
Resumo:
Selective papers of the workshop on "Development of models and forest soil surveys for monitoring of soil carbon", Koli, Finland, April 5-9 2006.
Resumo:
Selective papers of the workshop on "Development of models and forest soil surveys for monitoring of soil carbon", Koli, Finland, April 5-9 2006.
Resumo:
To study Assessing the impact of tillage practices on soil carbon losses dependents it is necessary to describe the temporal variability of soil CO2 emission after tillage. It has been argued that large amounts of CO2 emitted after tillage may serve as an indicator for longer-term changes in soil carbon stocks. Here we present a two-step function model based on soil temperature and soil moisture including an exponential decay in time component that is efficient in fitting intermediate-term emission after disk plow followed by a leveling harrow (conventional), and chisel plow coupled with a roller for clod breaking (reduced) tillage. Emission after reduced tillage was described using a non-linear estimator with determination coefficient (R²) as high as 0.98. Results indicate that when emission after tillage is addressed it is important to consider an exponential decay in time in order to predict the impact of tillage in short-term emissions.
Resumo:
Dans la dernière décennie, plusieurs hectares de terre agricole ont été convertis à la culture intensive sur courtes rotations (CICR) de saules dans le sud du Québec (Canada). Peu d’études ont été réalisées afin de déterminer comment se comporte la dynamique du carbone organique (Corg) dans le sol suivant cette conversion. Nous avons donc comparé la quantité du Corg et de deux pools labiles de carbone (carbone extractible à l’eau chaude et les sucres aminés) entre des CICR en phase initiale d’établissement (1-2 ans) et des parcelles appariées représentant le système de culture qui prévalait avant la transformation en culture de saules (culture fourragère) et d’autres cultures d’intérêt. La même chose a été faite pour une CICR en exploitation (depuis 9 ans) à un autre site. La quantité de Corg du sol n’était pas différente entre les CICR et les parcelles sous culture fourragère. Une plus haute concentration de sucres aminés dans le Corg total des CICR en établissement, par rapport aux autres parcelles sur le même site, permet de soupçonner que les perturbations liées à l’établissement ne mènent pas à une minéralisation accrue du Corg à court terme. La proportion de sucres aminés fongiques, qui diminue théoriquement lors de perturbations, était aussi plus élevée sous la plus jeune culture. Sous la CICR de neuf ans, le Corg était redistribué dans le profil vertical et les pools labiles étaient de plus petite taille (à une profondeur de 20-40 cm) comparativement à une parcelle témoin. La conversion d’une culture fourragère en plantation de saules en CICR n’a pas mené à la formation d’un puits de carbone. L’étude laisse entrevoir qu’un tel puits pourrait être créé si la conversion se faisait à partir d’un aménagement impliquant la culture en rotation de plantes annuelles et des labours.