973 resultados para skyrine effective interaction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time resolved magneto-optic Kerr rotation measurements of optically induced spin quantum beats are performed on heavily doped bulk (Ga,Mn)As diluted magnetic semiconductors (DMS). An effective g-factor of about 0.2-0.3 over a wide range of temperature for both as-grown and annealed (Ga,Mn)As samples is obtained. A larger effective g-factor at lower temperature and an increase of the spin relaxation with increasing in-plane magnetic field are observed and attributed to the stronger p-d exchange interaction between holes and the localized magnetic ion spins, leading to a larger Zeeman splitting and heavy-hole-light-hole mixing. An abnormal dip structure of the g-factor in the vicinity of the Curie temperature suggests that the mean-field model is insufficient to describe the interactions and dynamics of spins in DMS because it neglects the short-range spin correlation effect. (c) 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Yb3Fe5O12, the exchange effective field can be expressed as H-eff = -lambda center dot center dot center dot M-Fe = -lambda chi(eff)center dot center dot center dot H-e = -gamma center dot center dot center dot H-e where gamma is named as the exchange field parameter and H-e is the external magnetic field. Then, in this paper, by the discussions on the characteristics of the exchange field parameter gamma, the properties of exchange interaction in ytterbium iron garnet (Yb3Fe5O12) are analyzed under extreme conditions (high magnetic fields and low temperatures). Our theory suggests that the exchange field parameter gamma is the function of the temperatures under different external magnetic fields, and gamma = a+b center dot center dot center dot T+c center dot center dot center dot T-2, where the coefficients a, b, c are associated with the external magnetic fields and the magnetized directions. Thus, the temperature-dependence, field-dependence and anisotropic characteristics of the exchange interaction in Yb3Fe5O12 are revealed. Also, excellent fits to the available experiments are obtained. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the effects of the Dzyaloshinski-Moriya (DM) anisotropic interaction on the ground-state properties of the Heisenberg XY spin chain by means of the fidelity susceptibility, order parameter, and entanglement entropy. Our results show that the DM interaction could influence the distribution of the regions of quantum phase transitions and cause different critical regions in the XY spin model. Meanwhile, the DM interaction has effective influence on the degree of entanglement of the system and could be used to increase the entanglement of the spin system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We theoretically study the spatial behaviors of the spin precession in a two-dimensional electron system with spin-orbit interaction. Through analysis of interaction between the spin and the effective magnetic field in the system, we obtain the general conditions to generate a persistent spin helix and predict a persistent spin helix pattern in [001]-grown quantum wells. Particularly, we demonstrate that the phase of spin can be locked to propagate in a quantum well with SU(2) symmetry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Starting from effective mass Hamiltonian, we systematically investigate the symmetry of low-dimensional structures with spin-orbit interaction and transverse magnetic field. The position-dependent potentials are assumed to be space symmetric, which is ever-present in theory and experiment research. By group theory, we analyze degeneracy in different cases. Spin-orbit interaction makes the transition between Zeeman sub-levels possible, which is originally forbidden within dipole approximation. However, a transition rule given in this paper for the first time shows that the transition between some levels is forbidden for space symmetric potentials. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of lattice vibration on the system in which the electron is weakly coupled with bulk longitudinal optical phonons and strongly coupled with interface optical phonons in an infinite quantum well were studied by using Tokuda' linear-combination operator and a modified LLP variational method. The expressions for the effective mass of the polaron in a quantum well QW as functions of the well's width and temperature were derived. In particular, the law of the change of the vibration frequency of the polaron changing with well' s width and temperature are obtained. Numerical results of the effective mass and the vibration frequency of the polaron for KI/AgCl/Kl QW show that the vibration frequency and the effective mass of the polaron decrease with increasing well's width and temperature, but the contribution of the interaction between the electron and the different branches of phonons to the effective mass and the vibration frequency and the change of their variation with the well's width and temperature are greatly different.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We deduce the eight-band effective-mass Hamiltonian model for a manganese-doped ZnSe quantum sphere in the presence of the magnetic field, including the interaction between the conduction and valence bands, the spin-orbit coupling within the valence bands, the intrinsic spin Zeeman splitting, and the sp-d exchange interaction between the carriers and magnetic ion in the mean-field approximation. The size dependence of the electron and hole energy levels as well as the giant Zeeman splitting energies are studied theoretically. We find that the hole giant Zeeman splitting energies decrease with the increasing radius, smaller than that in the bulk material, and are different for different J(z) states, which are caused by the quantum confinement effect. Because the quantum sphere restrains the excited Landau states and exciton states, in the experiments we can observe directly the Zeeman splitting of basic states. At low magnetic field, the total Zeeman splitting energy increases linearly with the increasing magnetic field and saturates at modest field which is in agreement with recent experimental results. Comparing to the undoped case, the Zeeman splitting energy is 445 times larger which provides us with wide freedom to tailor the electronic structure of DMS nanocrystals for technological applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spin interaction and the effective g factor of a magnetic exciton (ME) are investigated theoretically in a diluted magnetic semiconductor (DMS) quantum dot (QD), including the Coulomb interaction and the sp-d exchange interaction. At low magnetic field, the ME energy decreases rapidly with increasing magnetic field and saturates at high magnetic field for high Mn concentration. The ground state of the ME exhibits an interesting crossing behavior between sigma(+)-ME and sigma(-)-ME for low Mn concentration. The g(ex) factor of the ME in a DMS QD displays a monotonic decrease with increasing magnetic field and can be tuned to zero by an external magnetic field. (C) 2003 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the optical transitions in Ga1-yInyNxAs1-x/GaAs single and multiple quantum wells using photovoltaic measurements at room temperature. From a theoretical fit to the experimental data, the conduction band offset Q(c), electron effective mass m(e)*, and band gap energy E-g were estimated. It was found that the Q(c) is dependent on the indium concentration, but independent on the nitrogen concentration over the range x=(0-1)%. The m(e)* of GaInNAs is much greater than that of InGaAs with the same concentration of indium, and increases as the nitrogen concentration increases up to 1%. Our experimental results for the m(e)* and E-g of GaInNAs are quantitatively explained by the two-band model based on the strong interaction of the conduction band minimum with the localized N states. (C) 2001 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

According to the method of path integral quantization for the canonical constrained system in Becchi-Rouet-Stora-Tyutin scheme, the supersymmetric electromagnetic interaction system was quantized. Both the Hamiltonian of the supersymmetric electromagnetic interaction system in phase space and the quantization procedure were simplified. The BRST generator was constructed, and the BRST transformations of supersymmetric fields were gotten; the effective action was calculated, and the generating functional for the Green function was achieved; also, the gauge generator was constructed, and the gauge transformation of the system was obtained. Finally, the Ward-Takahashi identities based on the canonical Noether theorem were calculated, and two relations between proper vertices and propagators were obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The isospin dependence of the effective pairing interaction is discussed on the basis of the Bardeen, Cooper, and Schrieffer theory of superfluid asymmetric nuclear matter. It is shown that the energy gap, calculated within the mean field approximation in the range from symmetric nuclear matter to pure neutron matter, is not linearly dependent on the symmetry parameter owing to the nonlinear structure of the gap equation. Moreover, the construction of a zero-range effective pairing interaction compatible with the neutron and proton gaps in homogeneous matter is investigated, along with some recent proposals of isospin dependence tested on the nuclear data table.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through electrostatic layer-by-layer (LbL) assembly, negatively charged calf thymus double stranded DNA (CTds-DNA), and positively charged Zr4+ ions were alternately deposited on gold substrate modified with chemisorbed cysteamine. Thus-prepared three-dimensional DNA networks were characterized by surface plasmon resonance (SPR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and infrared reflection-absorption spectroscopy (IR-RAS). SPR spectroscopy indicates that the effective thickness of DNA monolayer in the (DNA/Zr4+), bilayer was 1.5 +/- 0.1 nm, which corresponds to the surface coverage of 79% of its full packed monolayer. At the same time, a linear increase of film thickness with increasing number of layers was also confirmed by SPR characterizations. The data of XPS and IR-RAS show that Zr4+ ions interact with both the phosphate groups and nitrogenous bases of DNA and load into the framework of DNA. Furthermore, the interactions between this composite film and heme protein cytochrome c (Cyt c) were investigated by SPR spectroscopy and electrochemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through electrostatic layer-by-layer (LbL) assembly, negatively charged calf thymus double stranded DNA (CTds-DNA), and positively charged Zr4+ ions were alternately deposited on gold substrate modified with chemisorbed cysteamine. Thus-prepared three-dimensional DNA networks were characterized by surface plasmon resonance (SPR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and infrared reflection-absorption spectroscopy (IR-RAS). SPR spectroscopy indicates that the effective thickness of DNA monolayer in the (DNA/Zr4+), bilayer was 1.5 +/- 0.1 nm, which corresponds to the surface coverage of 79% of its full packed monolayer. At the same time, a linear increase of film thickness with increasing number of layers was also confirmed by SPR characterizations. The data of XPS and IR-RAS show that Zr4+ ions interact with both the phosphate groups and nitrogenous bases of DNA and load into the framework of DNA. Furthermore, the interactions between this composite film and heme protein cytochrome c (Cyt c) were investigated by SPR spectroscopy and electrochemistry. Compared with the adsorption of Cyt c on DNA monolayer, this composite multilayer film can obviously enhance the amount of immobilized Cyt c confirmed by SPR reflectivity-incident angle (R-theta) curves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The protein binding constant, binding sites of the Strychnos alkaloid-strychnine and bovine serum albumin (BSA) was determined by capillary electrophoretic frontal analysis (CE-FA) for the first time. The experiment was carried out in a polyacrylamide-coated fused silica capillary (48.4 cmx50 mu m i.d., 38.1 cm effective length) with 20 mmol/L citrate/MES buffer (pH 6.0, ionic strength 0.17). The applied voltage was 12 kV and detection wavelength was set at 257 nm. The plateau height of the peak was employed to determine the unbound concentration of drug in BSA equilibrated sample solution based on the external drug standard in the absence of protein. The present method provides a convenient, accurate technique for the early stage of drug screening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the first time, we have studied the potential-energy curves, spectroscopic terms, vibrational levels, and the spectroscopic constants of the ground and low-lying excited states of NiI by employing the complete active space self-consistent-field method with relativistic effective core potentials followed by multireference configuration-interaction calculations. We have identified six low-lying electronic states of NiI with doublet spin multiplicities, including three states of Delta symmetry and three states of Pi symmetry of the molecule within 15 000 cm(-1). The lowest (2)Delta state is identified as the ground state of NiI, and the lowest (2)Pi state is found at 2174.56 cm(-1) above it. These results fully support the previous conclusion of the observed spectra although our computational energy separation of the two states is obviously larger than that of the experimental values. The present calculations show that the low-lying excited states [13.9] (2)Pi and [14.6] (2)Delta are 3 (2)Pi and 3 (2)Delta electronic states of NiI, respectively. Our computed spectroscopic terms, vibrational levels, and spectroscopic constants for them are in good agreement with the experimental data available at present. In the present work we have not only suggested assignments for the observed states but also computed more electronic states that are yet to be observed experimentally. (c) 2005 American Institute of Physics.