990 resultados para sk 7041
Resumo:
Thyristor forced commutated AC/DC convertors are useful for improving the power factor and waveform of AC-side line current. These are controlled through pulse-width modulation schemes for best performance. However, the 3-phase versions impose restrictions on the PWM strategies that can be implemented for excellent harmonic rejection. This paper presents new PWM control strategies for the 3-phase converters and compares them along with the conventional 4-pulse PWM strategy for harmonic elimination. Finally, two new PWM strategies are shown to be the best, for which oscillograms are presented from actual implementation.
Resumo:
The finite element method is used to analyse stresses and displacements in a monoblock cylinder open at one end only. The cylinder is internally pressurised. The analysis shows that the minimum pressure required to cause yield in the cylinder decreases rapidly with increasing cylinder height until the height is about the same as the outer radius of the cylinder, beyond which the decrease is marginal. Introduction of a fillet at the internal corner enhances the design pressure substantially while a fillet at the outer corner affects this pressure only marginally.
Resumo:
A simple three-state model permitting two different configurational states for the solvent, together with one for the organic adsorbate, is analysed to derive the adsorption isotherm. The implications of this model regarding pseudo-two-state and pseudo-Frumkin adsorption isotherms are indicated. A critique of the earlier theory of Bockris, Devanathan and Müller is presented in brief.
Resumo:
The charge at which adsorption of orgamc compounds attains a maximum ( \sigma MAX M) at an electrochenucal interface is analysed using several multi-state models in a hierarchical manner The analysis is based on statistical mechamcal results for the following models (A) two-state site parity, (B) two-state muhl-slte, and (C) three-state site parity The coulombic interactions due to permanent and reduced dipole effects (using mean field approximation), electrostatic field effects and specific substrate interactions have been taken into account. The simplest model in the hierarchy (two-state site parity) yields the exphcit dependence of ( \sigma MAX M) on the permanent dipole moment, polarizability of the solvent and the adsorbate, lattice spacing, effective coordination number, etc Other models in the baerarchy bring to hght the influence of the solvent structure and the role of substrate interactions, etc As a result of this approach, the "composition" of oM.x m terms of the fundamental molecular constants becomes clear. With a view to use these molecular results to maxamum advantage, the derived results for ( \sigma MAX M) have been converted into those involving experimentally observable parameters lake Co, C 1, E N, etc Wherever possible, some of the earlier phenomenologlcal relations reported for ( \sigma MAX M), notably by Parsons, Damaskm and Frumkln, and Trasattl, are shown to have a certain molecular basis, vlz a simple two-state sate panty model.As a corollary to the hxerarcbacal modelling, \sigma MAX M and the potential corresponding to at (Emax) are shown to be constants independent of 0max or Corg for all models The lmphcatlon of our analysis f o r OmMa x with respect to that predicted by the generalized surface layer equation (which postulates Om~ and Ema x varlaUon with 0) is discussed in detail Finally we discuss an passing o M. and the electrosorptlon valency an this context.
Resumo:
The relations for the inner layer potential &fference (E) in the presence of adsorbed orgamc molecules are derived for three hterarchlcal models, m terms of molecular constants like permanent &pole moments, polarlzablhtles, etc It is shown how the experimentally observed patterns of the E vs 0 plots (hnear m all ranges of $\sigma^M$, non-linear in one or both regions of o M, etc ) can be understood in a serm-quantltatlve manner from the simplest model in our hierarchy, viz the two-state site panty version Two-state multi-site and three-state (sxte panty) models are also analysed and the slope (3E/80),,M tabulated for these also The results for the Esm-Markov effect are denved for all the models and compared with the earlier result of Parsons. A comparison with the GSL phenomenologlcal equation is presented and its molecular basis, as well as the hmltatlons, is analysed. In partxcular, two-state multa-slte and three-state (site panty) models yield E-o M relations that are more general than the "umfied" GSL equation The posslblhty of vaewlng the compact layer as a "composite medium" with an "effective dlelectnc constant" and obtaimng novel phenomenological descnptions IS also indicated.
Resumo:
A lattice formahsm using "spin variables" is employed to analyse multi-state models for the adsorption of neutral dipoles.In particular, a spin-1/2 (two-state) model incorporating permanent and reduced dipole moments of the solvent and the organic adsorbate,substrate interactions, and &screteness of charge effects is analysed The resulting Generalized Islng Hamaltonian is solved under mean field approximation (MFA) in order to derive the adsorption isotherm for organic molecules A few spin-1 (three-state) models are also analysed under MFA to describe the competitive adsorption of multi-state solvent and organic dipoles, and the appropriate equilibrium relations are derived The unification and isomorphism existing at the Hamlltonlan level for several diverse realizations, such as adsorption of ions and solvent/orgamc molecules, is indicated The possibility of analysing phase transitions using this generalized approach is briefly indicated.
Resumo:
General Properties of these Ethers.-They are colorless oils, extremely diffusible, heavier than water, insoluble in water, but soluble in fat solvents. They possess a pungent odor and undergo gradual decomposition On standing as shown by discoloration. Physiological testsI0 gave evidence that these substances are hypnotics and toxic.
Resumo:
Three new procedures - in the context of estimation of virial coefficients and summation of the partial virial series for hard discs and hard spheres - are proposed. They are based on the parametrised Euler transformation, a novel resummation, identity and the ε-convergence methods respectively. A comparison with other estimates (molecular dynamics, graph theory and empirical methods) reveals satisfactory agreement.
Resumo:
Discharge periods of lead-acid batteries are significantly reduced at subzero centigrade temperatures. The reduction is more than what can he expected due to decreased rates of various processes caused by a lowering of temperature and occurs despite the fact that active materials are available for discharge. It is proposed that the major cause for this is the freezing of the electrolyte. The concentration of acid decreases during battery discharge with a consequent increase in the freezing temperature. A battery freezes when the discharge temperature falls below the freezing temperature. A mathematical model is developed for conditions where charge-transfer reaction is the rate-limiting step. and Tafel kinetics are applicable. It is argued that freezing begins from the midplanes of electrodes and proceeds toward the reservoir in-between. Ionic conduction stops when one of the electrodes freezes fully and the time taken to reach that point, namely the discharge period, is calculated. The predictions of the model compare well to observations made at low current density (C/5) and at -20 and -40 degrees C. At higher current densities, however, diffusional resistances become important and a more complicated moving boundary problem needs to be solved to predict the discharge periods. (C) 2009 The Electrochemical Society.
Resumo:
The role of melt convection oil the performance of beat sinks with Phase Change Material (PCM) is presented in this paper. The beat sink consists of aluminum plate fins embedded in PCM and heat flux is supplied from the bottom. The design of such a heat sink requires optimization with respect to its geometrical parameters. The objective of the optimization is to maximize the heat sink operation time for the prescribed heat flux and the critical chip temperature. The parameters considered for optimization are fin number and fill thickness. The height and base plate thickness of heat sink are kept constant in the present analysis. An enthalpy based CFD model is developed, which is capable Of Simulating phase change and associated melt convection. The CFD model is Coupled with Genetic Algorithm (GA) for carrying out the optimization. Two cases are considered, one without melt convection (conduction regime) and the other with convection. It is found that the geometrical optimizations of heat sinks are different for the two cases, indicating the importance of inch convection in the design of heat sinks with PCMs.
Resumo:
This paper describes a method of adjusting the stator power factor angle for the control of an induction motor fed from a current source inverter (CSI) based on the concept of space vectors (or park vectors). It is shown that under steady state, if the torque angle is kept constant over the entire operating range, it has the advantage of keeping the slip frequency constant. This can be utilized to dispose of the speed feedback and simplify the control scheme for the drive, such that the stator voltage integral zero crossings alone can be used as a feedback for deciding the triggering instants of the CSI thyristors under stable operation of the system. A closed-loop control strategy is developed for the drive based on this principle, using a microprocessor-based control system and is implemented on a laboratory prototype CSI fed induction motor drive.
Resumo:
The work reported herein is part of an on-going programme to develop a computer code which, given the geometrical, process and material parameters of the forging operation, is able to predict the die and the billet cooling/heating characteristics in forging production. The code has been experimentally validated earlier for a single forging cycle and is now validated for a small batch production. To facilitate a step-by-step development of the code, the billet deformation has so far been limited to its surface layers, a situation akin to coining. The code has been used here to study the effects of die preheat-temperature, machine speed and rate of deformation the cooling/heating of the billet and the dies over a small batch of 150 forgings. The study shows: that there is a pre-heat temperature at which the billet temperature changes little from one forging to the next; that beyond a particular number of forgings, the machine speed ceases to have any pronounced influence on the temperature characteristics of the billet; and that increasing the rate of deformation reduces the heat loss from the billet and gives the billet a stable temperature profile with respect to the number of forgings. The code, which is simple to use, is being extended to bulk-deformation problems. Given a practical range of possible machine, billet and process specifics, the code should be able to arrive at a combination of these parameters which will give the best thermal characteristics of the die-billet system. The code is also envisaged as being useful in the design of isothermal dies and processes.
Resumo:
A new three-phase current source inverter topology is presented, consisting of three single-phase bridge inverters connected in series and feeding the isolated windings of a standard three-phase induction motor. Because a current zero in one phase now does not affect the others, it enables the implementation of a wide range of current PWM patterns for the reduction and selective elimination of torque pulsations. Furthermore, this system allows for very fast control of the fundamental load current through the use of sinusoidal PWM, a method that was not possible to implement on existing inverter topologies.
Resumo:
A pin-on-disc machine was used to wear Al-Si alloy pins under dry conditions. Unmodified and modified binary alloys and commercial multi-component alloys were tested. The surfaces of the worn alloys were examined by scanning electron microscopy to identify distinct topographical features to aid elucidation of the mechanisms of wear.
Resumo:
The wedge shape is a fairly common cross-section found in many non-axisymmetric components used in machines, aircraft, ships and automobiles. If such components are forged between two mutually inclined dies the metal displaced by the dies flows into the converging as well as into the diverging channels created by the inclined dies. The extent of each type of flow (convergent/divergent) depends on the die—material interface friction and the included die angle. Given the initial cross-section, the length as well as the exact geometry of the forged cross-section are therefore uniquely determined by these parameters. In this paper a simple stress analysis is used to predict changes in the geometry of a wedge undergoing compression between inclined platens. The flow in directions normal to the cross-section is assumed to be negligible. Experiments carried out using wedge-shaped lead billets show that, knowing the interface friction and as long as the deformation is not too large, the dimensional changes in the wedge can be predicted with reasonable accuracy. The predicted flow behaviour of metal for a wide range of die angles and interface friction is presented: these characteristics can be used by the die designer to choose the die lubricant (only) if the die angle is specified and to choose both of these parameters if there is no restriction on the exact die angle. The present work shows that the length of a wedge undergoing compression is highly sensitive to die—material interface friction. Thus in a situation where the top and bottom dies are inclined to each other, a wedge made of the material to be forged could be put between the dies and then compressed, whereupon the length of the compressed wedge — given the degree of compression — affords an estimate of the die—material interface friction.