954 resultados para size-selection
Resumo:
Bovine serum albumin (BSA) is a commonly used model protein in the development of pharmaceutical formulations. In order to assay its release from various dosage forms, either the bicinchoninic acid (BCA) assay or a more specific size-exclusion high performance liquid chromatography (SE-HPLC) method are commonly employed. However, these can give erroneous results in the presence of some commonly-used pharmaceutical excipients. We therefore investigated the ability of these methods to accurately determine BSA concentrations in pharmaceutical formulations that also contained various polymers and compared them with a new and compared with a new reverse-phase (RP)–HPLC technique. We found that the RP-HPLC technique was the most suitable method. It gave a linear response in the range of 0.5 -100 µg/ml with a correlation coefficient of 0.9999, a limit of detection of 0.11 µg/ml and quantification of 0.33 µg/ml. The performed ‘t’ test for the estimated and theoretical concentration indicated no significant difference between them providing the accuracy. Low % relative standard deviation values (0.8-1.39%) indicate the precision of the method. Furthermore, the method was used to quantify in vitro BSA release from polymeric freeze-dried formulations.
Resumo:
Three experiments examined the influence of a second rule on the pattern of card selections on Wason's selection task. In Experiment 1 participants received a version of the task with a single test rule or one of two versions of the task with the same original test rule together with a second rule. The probability of q was manipulated in the two-rules conditions by varying the size of the antecedent set in the second rule. The results showed a significant suppression of q card and not-p card selections in the alternative-rule conditions, but no difference as a function of antecedent set size. In Experiment 2 the size of the antecendent set in the two-rules conditions was manipulated using the context of a computer printing double-sided cards. The results showed a significant reduction of q card selections in the two-rules conditions, but no effect of p set size. In Experiment 3 the scenario accompanying the rule was manipulated, and it specified a single alternative antecedent or a number of alternative antecedents. The q card selection rates were not affected by the scenario manipulation but again were suppressed by the presence of a second rule. Our results suggest that people make inferences about the unseen side of the cards when engaging with the task and that these inferences are systematically influenced by the presence of a second rule, but are not influenced by the probabilistic characteristics of this rule. These findings are discussed in the context of decision theoretic views of selection task performance (Oaksford Chater, 1994).
Resumo:
We investigate the association between female reproductive investment, absolute size, and sexual size dimorphism in spiders to test the predictions of the fecundity-advantage hypothesis. The relationships between absolute size and sexual size dimorphism and aspects of female reproductive output are examined in comparative analyses using phylogenetically independent contrasts. We provide support for the idea that allometry for sexual dimorphism is the result of variation in female size more so than male size. Regression analyses suggest selection for increased fecundity in females. We argue that fecundity selection provides the only general explanation for the evolution of sexual size dimorphism in spiders.
Resumo:
Although data quality and weighting decisions impact the outputs of reserve selection algorithms, these factors have not been closely studied. We examine these methodological issues in the use of reserve selection algorithms by comparing: (1) quality of input data and (2) use of different weighting methods for prioritizing among species. In 2003, the government of Madagascar, a global biodiversity hotspot, committed to tripling the size of its protected area network to protect 10% of the country’s total land area. We apply the Zonation reserve selection algorithm to distribution data for 52 lemur species to identify priority areas for the expansion of Madagascar’s reserve network. We assess the similarity of the areas selected, as well as the proportions of lemur ranges protected in the resulting areas when different forms of input data were used: extent of occurrence versus refined extent of occurrence. Low overlap between the areas selected suggests that refined extent of occurrence data are highly desirable, and to best protect lemur species, we recommend refining extent of occurrence ranges using habitat and altitude limitations. Reserve areas were also selected for protection based on three different species weighting schemes, resulting in marked variation in proportional representation of species among the IUCN Red List of Threatened Species extinction risk categories. This result demonstrates that assignment of species weights influences whether a reserve network prioritizes maximizing overall species protection or maximizing protection of the most threatened species.
Resumo:
Nonlinear models constructed from radial basis function (RBF) networks can easily be over-fitted due to the noise on the data. While information criteria, such as the final prediction error (FPE), can provide a trade-off between training error and network complexity, the tunable parameters that penalise a large size of network model are hard to determine and are usually network dependent. This article introduces a new locally regularised, two-stage stepwise construction algorithm for RBF networks. The main objective is to produce a parsomous network that generalises well over unseen data. This is achieved by utilising Bayesian learning within a two-stage stepwise construction procedure to penalise centres that are mainly interpreted by the noise.
Resumo:
PURPOSE The appropriate selection of patients for early clinical trials presents a major challenge. Previous analyses focusing on this problem were limited by small size and by interpractice heterogeneity. This study aims to define prognostic factors to guide risk-benefit assessments by using a large patient database from multiple phase I trials. PATIENTS AND METHODS Data were collected from 2,182 eligible patients treated in phase I trials between 2005 and 2007 in 14 European institutions. We derived and validated independent prognostic factors for 90-day mortality by using multivariate logistic regression analysis. Results The 90-day mortality was 16.5% with a drug-related death rate of 0.4%. Trial discontinuation within 3 weeks occurred in 14% of patients primarily because of disease progression. Eight different prognostic variables for 90-day mortality were validated: performance status (PS), albumin, lactate dehydrogenase, alkaline phosphatase, number of metastatic sites, clinical tumor growth rate, lymphocytes, and WBC. Two different models of prognostic scores for 90-day mortality were generated by using these factors, including or excluding PS; both achieved specificities of more than 85% and sensitivities of approximately 50% when using a score cutoff of 5 or higher. These models were not superior to the previously published Royal Marsden Hospital score in their ability to predict 90-day mortality. CONCLUSION Patient selection using any of these prognostic scores will reduce non-drug-related 90-day mortality among patients enrolled in phase I trials by 50%. However, this can be achieved only by an overall reduction in recruitment to phase I studies of 20%, more than half of whom would in fact have survived beyond 90 days.
Resumo:
Model selection between competing models is a key consideration in the discovery of prognostic multigene signatures. The use of appropriate statistical performance measures as well as verification of biological significance of the signatures is imperative to maximise the chance of external validation of the generated signatures. Current approaches in time-to-event studies often use only a single measure of performance in model selection, such as logrank test p-values, or dichotomise the follow-up times at some phase of the study to facilitate signature discovery. In this study we improve the prognostic signature discovery process through the application of the multivariate partial Cox model combined with the concordance index, hazard ratio of predictions, independence from available clinical covariates and biological enrichment as measures of signature performance. The proposed framework was applied to discover prognostic multigene signatures from early breast cancer data. The partial Cox model combined with the multiple performance measures were used in both guiding the selection of the optimal panel of prognostic genes and prediction of risk within cross validation without dichotomising the follow-up times at any stage. The signatures were successfully externally cross validated in independent breast cancer datasets, yielding a hazard ratio of 2.55 [1.44, 4.51] for the top ranking signature.
Resumo:
Small mixer impeller design is not tailored for granulation because impellers are intended for a wide range of processes. The aim of this research was to evaluate the performances of several impellers to provide guidance on the selection and design for the purposes of granulation. Lactose granules were produced using wet granulation with water as a binder. A Kenwood KM070 mixer was used as a standard apparatus and five impeller designs with different shapes and surface areas were used. The efficacy of granulate formation was measured by adding an optically sensitive tracer to determine variations in active ingredient content across random samples of granules from the same size classes. It was found that impeller design influenced the homogeneity of the granules and therefore can affect final product performance. The variation in active ingredient content across granules of differing size was also investigated. The results show that small granules were more potent than larger granules.
Resumo:
Multivariate classification techniques have proven to be powerful tools for distinguishing experimental conditions in single sessions of functional magnetic resonance imaging (fMRI) data. But they are vulnerable to a considerable penalty in classification accuracy when applied across sessions or participants, calling into question the degree to which fine-grained encodings are shared across subjects. Here, we introduce joint learning techniques, where feature selection is carried out using a held-out subset of a target dataset, before training a linear classifier on a source dataset. Single trials of functional MRI data from a covert property generation task are classified with regularized regression techniques to predict the semantic class of stimuli. With our selection techniques (joint ranking feature selection (JRFS) and disjoint feature selection (DJFS)), classification performance during cross-session prediction improved greatly, relative to feature selection on the source session data only. Compared with JRFS, DJFS showed significant improvements for cross-participant classification. And when using a groupwise training, DJFS approached the accuracies seen for prediction across different sessions from the same participant. Comparing several feature selection strategies, we found that a simple univariate ANOVA selection technique or a minimal searchlight (one voxel in size) is appropriate, compared with larger searchlights.
Resumo:
Increasing litter size has long been a goal of pig breeders and producers, and may have implications for pig (Sus scrofa domesticus) welfare. This paper reviews the scientific evidence on biological factors affecting sow and piglet welfare in relation to large litter size. It is concluded that, in a number of ways, large litter size is a risk factor for decreased animal welfare in pig production. Increased litter size is associated with increased piglet mortality, which is likely to be associated with significant negative animal welfare impacts. In surviving piglets, many of the causes of mortality can also occur in non-lethal forms that cause suffering. Intense teat competition may increase the likelihood that some piglets do not gain adequate access to milk, causing starvation in the short term and possibly long-term detriments to health. Also, increased litter size leads to more piglets with low birth weight which is associated with a variety of negative long-term effects. Finally, increased production pressure placed on sows bearing large litters may produce health and welfare concerns for the sow. However, possible biological approaches to mitigating health and welfare issues associated with large litters are being implemented. An important mitigation strategy is genetic selection encompassing traits that promote piglet survival, vitality and growth. Sow nutrition and the minimisation of stress during gestation could also contribute to improving outcomes in terms of piglet welfare. Awareness of the possible negative welfare consequences of large litter size in pigs should lead to further active measures being taken to mitigate the mentioned effects. © 2013 Universities Federation for Animal Welfare.
Resumo:
BACKGROUND: To plan and implement services to persons who inject drugs (PWID), knowing their number is essential. For the island of Montréal, Canada, the only estimate, of 11,700 PWID, was obtained in 1996 through a capture-recapture method. Thirteen years later, this study was undertaken to produce a new estimate. METHODS: PWID were defined as individuals aged 14-65 years, having injected recently and living on the island of Montréal. The study period was 07/01/2009 to 06/30/2010. An estimate was produced using a six-source capture-recapture log-linear regression method. The data sources were two epidemiological studies and four drug dependence treatment centres. Model selection was conducted in two steps, the first focusing on interactions between sources and the second, on age group and gender as covariates and as modulators of interactions. RESULTS: A total of 1480 PWID were identified in the six capture sources. They corresponded to 1132 different individuals. Based on the best-fitting model, which included age group and sex as covariates and six two-source interactions (some modulated by age), the estimated population was 3910 PWID (95% confidence intervals (CI): 3180-4900) which represents a prevalence of 2.8 (95% CI: 2.3-3.5) PWID per 1000 persons aged 14-65 years. CONCLUSIONS: The 2009-2010 estimate represents a two-third reduction compared to the one for 1996. The multisource capture-recapture method is useful to produce estimates of the size of the PWID population. It is of particular interest when conducted at regular intervals thus allowing for close monitoring of the injection phenomenon.
Resumo:
Male dominance hierarchies are usually linked to relative body size and to weapon size, that is, to determinants of fighting ability. Secondary sexual characters that are not directly used as weapons could still be linked to dominance if they reveal determination or overall health and vigour and hence, indirectly, fighting ability. We studied the mating behaviour of the minnow, Phoxinus phoxinus, a cyprinid fish in which males develop breeding tubercles during the spawning season. The function of these breeding tubercles is still not clear. Using microsatellite markers, we determined male reproductive success under controlled conditions. The minnows were territorial and quickly established a dominance hierarchy at the beginning of the spawning season. Dominance was strongly and positively linked to fertilization success. Although body size and number of breeding tubercles were not significantly correlated in our sample, both large males and males with many breeding tubercles were more dominant and achieved higher fertilization success than small males or males with few tubercles. We found multimale fertilization in most clutches, suggesting that sperm competition is important in this species. Females showed behaviour that may be linked to spawning decision, that is, male dominance might not be the only determinant of male reproductive success in minnows
Resumo:
La dernière décennie a connu un intérêt croissant pour les problèmes posés par les variables instrumentales faibles dans la littérature économétrique, c’est-à-dire les situations où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter. En effet, il est bien connu que lorsque les instruments sont faibles, les distributions des statistiques de Student, de Wald, du ratio de vraisemblance et du multiplicateur de Lagrange ne sont plus standard et dépendent souvent de paramètres de nuisance. Plusieurs études empiriques portant notamment sur les modèles de rendements à l’éducation [Angrist et Krueger (1991, 1995), Angrist et al. (1999), Bound et al. (1995), Dufour et Taamouti (2007)] et d’évaluation des actifs financiers (C-CAPM) [Hansen et Singleton (1982,1983), Stock et Wright (2000)], où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter, ont montré que l’utilisation de ces statistiques conduit souvent à des résultats peu fiables. Un remède à ce problème est l’utilisation de tests robustes à l’identification [Anderson et Rubin (1949), Moreira (2002), Kleibergen (2003), Dufour et Taamouti (2007)]. Cependant, il n’existe aucune littérature économétrique sur la qualité des procédures robustes à l’identification lorsque les instruments disponibles sont endogènes ou à la fois endogènes et faibles. Cela soulève la question de savoir ce qui arrive aux procédures d’inférence robustes à l’identification lorsque certaines variables instrumentales supposées exogènes ne le sont pas effectivement. Plus précisément, qu’arrive-t-il si une variable instrumentale invalide est ajoutée à un ensemble d’instruments valides? Ces procédures se comportent-elles différemment? Et si l’endogénéité des variables instrumentales pose des difficultés majeures à l’inférence statistique, peut-on proposer des procédures de tests qui sélectionnent les instruments lorsqu’ils sont à la fois forts et valides? Est-il possible de proposer les proédures de sélection d’instruments qui demeurent valides même en présence d’identification faible? Cette thèse se focalise sur les modèles structurels (modèles à équations simultanées) et apporte des réponses à ces questions à travers quatre essais. Le premier essai est publié dans Journal of Statistical Planning and Inference 138 (2008) 2649 – 2661. Dans cet essai, nous analysons les effets de l’endogénéité des instruments sur deux statistiques de test robustes à l’identification: la statistique d’Anderson et Rubin (AR, 1949) et la statistique de Kleibergen (K, 2003), avec ou sans instruments faibles. D’abord, lorsque le paramètre qui contrôle l’endogénéité des instruments est fixe (ne dépend pas de la taille de l’échantillon), nous montrons que toutes ces procédures sont en général convergentes contre la présence d’instruments invalides (c’est-à-dire détectent la présence d’instruments invalides) indépendamment de leur qualité (forts ou faibles). Nous décrivons aussi des cas où cette convergence peut ne pas tenir, mais la distribution asymptotique est modifiée d’une manière qui pourrait conduire à des distorsions de niveau même pour de grands échantillons. Ceci inclut, en particulier, les cas où l’estimateur des double moindres carrés demeure convergent, mais les tests sont asymptotiquement invalides. Ensuite, lorsque les instruments sont localement exogènes (c’est-à-dire le paramètre d’endogénéité converge vers zéro lorsque la taille de l’échantillon augmente), nous montrons que ces tests convergent vers des distributions chi-carré non centrées, que les instruments soient forts ou faibles. Nous caractérisons aussi les situations où le paramètre de non centralité est nul et la distribution asymptotique des statistiques demeure la même que dans le cas des instruments valides (malgré la présence des instruments invalides). Le deuxième essai étudie l’impact des instruments faibles sur les tests de spécification du type Durbin-Wu-Hausman (DWH) ainsi que le test de Revankar et Hartley (1973). Nous proposons une analyse en petit et grand échantillon de la distribution de ces tests sous l’hypothèse nulle (niveau) et l’alternative (puissance), incluant les cas où l’identification est déficiente ou faible (instruments faibles). Notre analyse en petit échantillon founit plusieurs perspectives ainsi que des extensions des précédentes procédures. En effet, la caractérisation de la distribution de ces statistiques en petit échantillon permet la construction des tests de Monte Carlo exacts pour l’exogénéité même avec les erreurs non Gaussiens. Nous montrons que ces tests sont typiquement robustes aux intruments faibles (le niveau est contrôlé). De plus, nous fournissons une caractérisation de la puissance des tests, qui exhibe clairement les facteurs qui déterminent la puissance. Nous montrons que les tests n’ont pas de puissance lorsque tous les instruments sont faibles [similaire à Guggenberger(2008)]. Cependant, la puissance existe tant qu’au moins un seul instruments est fort. La conclusion de Guggenberger (2008) concerne le cas où tous les instruments sont faibles (un cas d’intérêt mineur en pratique). Notre théorie asymptotique sous les hypothèses affaiblies confirme la théorie en échantillon fini. Par ailleurs, nous présentons une analyse de Monte Carlo indiquant que: (1) l’estimateur des moindres carrés ordinaires est plus efficace que celui des doubles moindres carrés lorsque les instruments sont faibles et l’endogenéité modérée [conclusion similaire à celle de Kiviet and Niemczyk (2007)]; (2) les estimateurs pré-test basés sur les tests d’exogenété ont une excellente performance par rapport aux doubles moindres carrés. Ceci suggère que la méthode des variables instrumentales ne devrait être appliquée que si l’on a la certitude d’avoir des instruments forts. Donc, les conclusions de Guggenberger (2008) sont mitigées et pourraient être trompeuses. Nous illustrons nos résultats théoriques à travers des expériences de simulation et deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le problème bien connu du rendement à l’éducation. Le troisième essai étend le test d’exogénéité du type Wald proposé par Dufour (1987) aux cas où les erreurs de la régression ont une distribution non-normale. Nous proposons une nouvelle version du précédent test qui est valide même en présence d’erreurs non-Gaussiens. Contrairement aux procédures de test d’exogénéité usuelles (tests de Durbin-Wu-Hausman et de Rvankar- Hartley), le test de Wald permet de résoudre un problème courant dans les travaux empiriques qui consiste à tester l’exogénéité partielle d’un sous ensemble de variables. Nous proposons deux nouveaux estimateurs pré-test basés sur le test de Wald qui performent mieux (en terme d’erreur quadratique moyenne) que l’estimateur IV usuel lorsque les variables instrumentales sont faibles et l’endogénéité modérée. Nous montrons également que ce test peut servir de procédure de sélection de variables instrumentales. Nous illustrons les résultats théoriques par deux applications empiriques: le modèle bien connu d’équation du salaire [Angist et Krueger (1991, 1999)] et les rendements d’échelle [Nerlove (1963)]. Nos résultats suggèrent que l’éducation de la mère expliquerait le décrochage de son fils, que l’output est une variable endogène dans l’estimation du coût de la firme et que le prix du fuel en est un instrument valide pour l’output. Le quatrième essai résout deux problèmes très importants dans la littérature économétrique. D’abord, bien que le test de Wald initial ou étendu permette de construire les régions de confiance et de tester les restrictions linéaires sur les covariances, il suppose que les paramètres du modèle sont identifiés. Lorsque l’identification est faible (instruments faiblement corrélés avec la variable à instrumenter), ce test n’est en général plus valide. Cet essai développe une procédure d’inférence robuste à l’identification (instruments faibles) qui permet de construire des régions de confiance pour la matrices de covariances entre les erreurs de la régression et les variables explicatives (possiblement endogènes). Nous fournissons les expressions analytiques des régions de confiance et caractérisons les conditions nécessaires et suffisantes sous lesquelles ils sont bornés. La procédure proposée demeure valide même pour de petits échantillons et elle est aussi asymptotiquement robuste à l’hétéroscédasticité et l’autocorrélation des erreurs. Ensuite, les résultats sont utilisés pour développer les tests d’exogénéité partielle robustes à l’identification. Les simulations Monte Carlo indiquent que ces tests contrôlent le niveau et ont de la puissance même si les instruments sont faibles. Ceci nous permet de proposer une procédure valide de sélection de variables instrumentales même s’il y a un problème d’identification. La procédure de sélection des instruments est basée sur deux nouveaux estimateurs pré-test qui combinent l’estimateur IV usuel et les estimateurs IV partiels. Nos simulations montrent que: (1) tout comme l’estimateur des moindres carrés ordinaires, les estimateurs IV partiels sont plus efficaces que l’estimateur IV usuel lorsque les instruments sont faibles et l’endogénéité modérée; (2) les estimateurs pré-test ont globalement une excellente performance comparés à l’estimateur IV usuel. Nous illustrons nos résultats théoriques par deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le modèle de rendements à l’éducation. Dans la première application, les études antérieures ont conclu que les instruments n’étaient pas trop faibles [Dufour et Taamouti (2007)] alors qu’ils le sont fortement dans la seconde [Bound (1995), Doko et Dufour (2009)]. Conformément à nos résultats théoriques, nous trouvons les régions de confiance non bornées pour la covariance dans le cas où les instruments sont assez faibles.
Resumo:
Las regulaciones como primaje comunitario, paquetes estandarizados y afiliación abierta, orientadas a reducir el impacto de las fallas en los mercados de seguros, tienen un efecto limitado puesto que abren espacio a la selección sesgada. A partir de 1993, el sistema de seguridad social en salud en Colombia fue reformado hacia un enfoque de mercado con la expectativa de mejorar el desempeño de los monopolios preexistentes exponiéndolos a la competencia de nuevos entrantes. La hipótesis que se maneja en el trabajo es que las fallas de mercado pueden llevar a selección sesgada favoreciendo a los nuevos entrantes. Se analizaron dos encuestas de hogares utilizando el estado de salud auto reportado y la presencia de enfermedad crónica como indicadores prospectivos del riesgo de los afiliados. Se encuentra que hay selección sesgada, llevando a selección adversa entre los aseguradores preexistentes, y a selección favorable entre los nuevos entrantes. Este patrón se observa en 1997 y se incrementa en el 2003. Aunque las entidades preexistentes son entidades públicas, y su tamaño disminuyó sustancialmente entre estos años, se analizan sus implicaciones fiscales en términos de financiación adicional por parte del gobierno.
Resumo:
We examined nest site selection by Puerto Rican Parrots, a secondary cavity nester, at several spatial scales using the nest entrance as the central focal point relative to 20 habitat and spatial variables. The Puerto Rican Parrot is unique in that, since 2001, all known nesting in the wild has occurred in artificial cavities, which also provided us with an opportunity to evaluate nest site selection without confounding effects of the actual nest cavity characteristics. Because of the data limitations imposed by the small population size of this critically endangered endemic species, we employed a distribution-free statistical simulation approach to assess site selection relative to characteristics of used and unused nesting sites. Nest sites selected by Puerto Rican Parrots were characterized by greater horizontal and vertical visibility from the nest entrance, greater density of mature sierra palms, and a more westerly and leeward orientation of nest entrances than unused sites. Our results suggest that nest site selection in this species is an adaptive response to predation pressure, to which the parrots respond by selecting nest sites offering advantages in predator detection and avoidance at all stages of the nesting cycle. We conclude that identifying and replicating the “nest gestalt” of successful nesting sites may facilitate conservation efforts for this and other endangered avian species.