946 resultados para single-wave function
Resumo:
If and only if each single cue uniquely defines its target, a independence model based on fragment theory can predict the strength of a combined dual cue from the strengths of its single cue components. If the single cues do not each uniquely define their target, no single monotonic function can predict the strength of the dual cue from its components; rather, what matters is the number of possible targets. The probability of generating a target word was .19 for rhyme cues, .14 for category cues, and .97 for rhyme-plus-category dual cues. Moreover, some pairs of cues had probabilities of producing their targets of .03 when used individually and 1.00 when used together, whereas other pairs had moderate probabilities individually and together. The results, which are interpreted in terms of multiple constraints limiting the number of responses, show why rhymes, which play a minimal role in laboratory studies of memory, are common in real-world mnemonics.
Resumo:
New results are presented for Ps(1s) scattering by H(1s), He(1(1)S) and Li(2s). Calculations have been performed in a coupled state framework, usually employing pseudostates, and allowing for excitation of both the Ps and the atom. In the Ps(1s)-H(1s) calculations the H- formation channel has also been included using a highly accurate H- wave function. Resonances resulting from unstable states in which the positron orbits H- have been calculated and analysed. The new Ps(1s)-He(1(1)S) calculations still fail to resolve existing discrepancies between theory and experiment at very low energies. The possible importance of the Ps(-) formation channel in all three collision systems is discussed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We describe an ab initio nonperturbative time-dependent R-matrix theory for ultrafast atomic processes. This theory enables investigations of the interaction of few-femtosecond and -attosecond pulse lasers with complex multielectron atoms and atomic ions. A derivation and analysis of the basic equations are given, which propagate the atomic wave function in the presence of the laser field forward in time in the internal and external R-matrix regions. To verify the accuracy of the approach, we investigate two-photon ionization of Ne irradiated by an intense laser pulse and compare current results with those obtained using the R-matrix Floquet method and an alternative time-dependent method. We also verify the capability of the current approach by applying it to the study of two-dimensional momentum distributions of electrons ejected from Ne due to irradiation by a sequence of 2 as light pulses in the presence of a 780 nm laser field.
Resumo:
Most tissues develop from stem cells and precursors that undergo differentiation as their proliferative potential decreases. Mature differentiated cells rarely proliferate and are replaced at the end of their life by new cells derived from precursors. Langerhans cells (LCs) of the epidermis, although of myeloid origin, were shown to renew in tissues independently from the bone marrow, suggesting the existence of a dermal or epidermal progenitor. We investigated the mechanisms involved in LC development and homeostasis. We observed that a single wave of LC precursors was recruited in the epidermis of mice around embryonic day 18 and acquired a dendritic morphology, major histocompatibility complex II, CD11c, and langerin expression immediately after birth. Langerin+ cells then undergo a massive burst of proliferation between postnatal day 2 (P2) and P7, expanding their numbers by 10–20-fold. After the first week of life, we observed low-level proliferation of langerin+ cells within the epidermis. However, in a mouse model of atopic dermatitis (AD), a keratinocyte signal triggered increased epidermal LC proliferation. Similar findings were observed in epidermis from human patients with AD. Therefore, proliferation of differentiated resident cells represents an alternative pathway for development in the newborn, homeostasis, and expansion in adults of selected myeloid cell populations such as LCs. This mechanism may be relevant in locations where leukocyte trafficking is limited.
Resumo:
In this paper. we present collision strengths and Maxwellian averaged effective collision strengths for the electron-impact excitation of Fe II. We consider specifically the optically allowed lines for transitions from the 3d(6)4s and 3d(7) even parity configuration states to the 3d(6)4p odd parity configuration levels. The parallel suite of Breit-Pauli codes are utilized to compute the collision cross-sections where relativistic effects are included explicitly in both the target and the scattering approximation. A total of 100 LS or 262-jj levels formed from the basis configurations 3d(6)4s, 3d(7) and 3d(6)4p were included in the wave-function representation of the target, including all doublet. quartet and sextet terms. The Maxwellian averaged effective collision strengths are computed across a wide range of electron temperatures from 100 to 100,000 K, temperatures of importance in astrophysical and plasma applications. A detailed comparison is made with previous works and significant differences were found to occur for some of the transitions considered. We conclude that in order to obtain converged collision strengths and effective collision strengths for these allowed transitions it is necessary to include contributions from partial waves up to L = 50 explicitly in the calculation, and in addition, account for contributions from even higher partial waves through a "top up" procedure.
Resumo:
Effective collision strengths computed by the R-matrix method are presented for the electron-impact excitation of nitrogen-like S X. The total wave function used in the expansion includes the lowest 11 eigenstates of S X which arise from the 2s(2)2p(3), 2s2p(4), 2p(5) and 2s(2)2p(2)3s configurations. These 11 LS target states correspond to 22 fine-structure levels, giving 231 possible transitions. All the effective collision strengths for these transitions are tabulated in the range log T(K) = 4.6 to log T(K) = 6.7. The energy level values and oscillator strengths for allowed transitions are also tabulated. The effective collision strengths were calculated by averaging the electron collision strengths over a Maxwellian distribution of velocities. The present effective collision strengths are the only results currently available for these fine-structure transition rates. (C) 2000 Academic Press.
Resumo:
The key questions of uniqueness and existence in time-dependent density-functional theory are usually formulated only for potentials and densities that are analytic in time. Simple examples, standard in quantum mechanics, lead, however, to nonanalyticities. We reformulate these questions in terms of a nonlinear Schroedinger equation with a potential that depends nonlocally on the wave function.
Resumo:
The states of a boson pair in a one-dimensional double-well potential are investigated. Properties of the ground and lowest excited states of this system are studied, including the two-particle wave function, momentum pair distribution, and entanglement. The effects of varying both the barrier height and the effective interaction strength are investigated.
Resumo:
In this paper, we report a fully ab initio variational Monte Carlo study of the linear and periodic chain of hydrogen atoms, a prototype system providing the simplest example of strong electronic correlation in low dimensions. In particular, we prove that numerical accuracy comparable to that of benchmark density-matrix renormalization-group calculations can be achieved by using a highly correlated Jastrow-antisymmetrized geminal power variational wave function. Furthermore, by using the so-called "modern theory of polarization" and by studying the spin-spin and dimer-dimer correlations functions, we have characterized in detail the crossover between the weakly and strongly correlated regimes of this atomic chain. Our results show that variational Monte Carlo provides an accurate and flexible alternative to highly correlated methods of quantum chemistry which, at variance with these methods, can be also applied to a strongly correlated solid in low dimensions close to a crossover or a phase transition.
Resumo:
Diagrammatic many-body theory is used to calculate the scattering phase shifts, normalized annihilation rates Zeff, and annihilation ? spectra for positron collisions with the hydrogenlike ions He+, Li2+, B4+, and F8+. Short-range electron-positron correlations and longer-range positron-ion correlations are accounted for by evaluating nonlocal corrections to the annihilation vertex and the exact positron self-energy. The numerical calculation of the many-body theory diagrams is performed using B-spline basis sets. To elucidate the role of the positron-ion repulsion, the annihilation rate is also estimated analytically in the Coulomb-Born approximation. It is found that the energy dependence and magnitude of Zeff are governed by the Gamow factor that characterizes the suppression of the positron wave function near the ion. For all of the H-like ions, the correlation enhancement of the annihilation rate is found to be predominantly due to corrections to the annihilation vertex, while the corrections to the positron wave function play only a minor role. Results of the calculations for s-, p-, and d-wave incident positrons of energies up to the positronium-formation threshold are presented. Where comparison is possible, our values are in excellent agreement with the results obtained using other, e.g., variational, methods. The annihilation-vertex enhancement factors obtained in the present calculations are found to scale approximately as 1+(1.6+0.46l)/Zi, where Zi is the net charge of the ion and l is the positron orbital angular momentum. Our results for positron annihilation in H-like ions provide insights into the problem of positron annihilation with core electrons in atoms and condensed matter systems, which have similar binding energies.
Resumo:
O objectivo deste trabalho é a análise da eficiência produtiva e dos efeitos da concentração sobre os custos bancários, tendo por base a indústria bancária portuguesa. O carácter multiproduto da empresa bancária sugere a necessidade de se adoptar formas multiproduto da função custo (tipo Fourier). Introduzimos variáveis de homogeneidade e de estrutura que permitem o recurso a formas funcionais uniproduto (Cobb-Douglas) à banca. A amostra corresponde a 22 bancos que operavam em Portugal entre 1995-2001, base não consolidada e dados em painel. Para o estudo da ineficiência recorreu-se ao modelo estocástico da curva fronteira (SFA), para as duas especificações. Na análise da concentração, introduziram-se variáveis binárias que pretendem captar os efeitos durante quatro anos após a concentração. Tanto no caso da SFA como no da concentração, os resultados encontrados são sensíveis à especificação funcional adoptada. Concluindo, o processo de concentração bancário parece justificar-se pela possibilidade da diminuição da ineficiência-X.
Resumo:
Metabolic homeostasis is achieved by complex molecular and cellular networks that differ significantly among individuals and are difficult to model with genetically engineered lines of mice optimized to study single gene function. Here, we systematically acquired metabolic phenotypes by using the EUMODIC EMPReSS protocols across a large panel of isogenic but diverse strains of mice (BXD type) to study the genetic control of metabolism. We generated and analyzed 140 classical phenotypes and deposited these in an open-access web service for systems genetics (www.genenetwork.org). Heritability, influence of sex, and genetic modifiers of traits were examined singly and jointly by using quantitative-trait locus (QTL) and expression QTL-mapping methods. Traits and networks were linked to loci encompassing both known variants and novel candidate genes, including alkaline phosphatase (ALPL), here linked to hypophosphatasia. The assembled and curated phenotypes provide key resources and exemplars that can be used to dissect complex metabolic traits and disorders.
Resumo:
All-electron partitioning of wave functions into products ^core^vai of core and valence parts in orbital space results in the loss of core-valence antisymmetry, uncorrelation of motion of core and valence electrons, and core-valence overlap. These effects are studied with the variational Monte Carlo method using appropriately designed wave functions for the first-row atoms and positive ions. It is shown that the loss of antisymmetry with respect to interchange of core and valence electrons is a dominant effect which increases rapidly through the row, while the effect of core-valence uncorrelation is generally smaller. Orthogonality of the core and valence parts partially substitutes the exclusion principle and is absolutely necessary for meaningful calculations with partitioned wave functions. Core-valence overlap may lead to nonsensical values of the total energy. It has been found that even relatively crude core-valence partitioned wave functions generally can estimate ionization potentials with better accuracy than that of the traditional, non-partitioned ones, provided that they achieve maximum separation (independence) of core and valence shells accompanied by high internal flexibility of ^core and Wvai- Our best core-valence partitioned wave function of that kind estimates the IP's with an accuracy comparable to the most accurate theoretical determinations in the literature.
Resumo:
A new approach to treating large Z systems by quantum Monte Carlo has been developed. It naturally leads to notion of the 'valence energy'. Possibilities of the new approach has been explored by optimizing the wave function for CuH and Cu and computing dissociation energy and dipole moment of CuH using variational Monte Carlo. The dissociation energy obtained is about 40% smaller than the experimental value; the method is comparable with SCF and simple pseudopotential calculations. The dipole moment differs from the best theoretical estimate by about 50% what is again comparable with other methods (Complete Active Space SCF and pseudopotential methods).
Resumo:
Our objective is to develop a diffusion Monte Carlo (DMC) algorithm to estimate the exact expectation values, ($o|^|^o), of multiplicative operators, such as polarizabilities and high-order hyperpolarizabilities, for isolated atoms and molecules. The existing forward-walking pure diffusion Monte Carlo (FW-PDMC) algorithm which attempts this has a serious bias. On the other hand, the DMC algorithm with minimal stochastic reconfiguration provides unbiased estimates of the energies, but the expectation values ($o|^|^) are contaminated by ^, an user specified, approximate wave function, when A does not commute with the Hamiltonian. We modified the latter algorithm to obtain the exact expectation values for these operators, while at the same time eliminating the bias. To compare the efficiency of FW-PDMC and the modified DMC algorithms we calculated simple properties of the H atom, such as various functions of coordinates and polarizabilities. Using three non-exact wave functions, one of moderate quality and the others very crude, in each case the results are within statistical error of the exact values.