951 resultados para sex hormone determination
Resumo:
As a species of major interest for aquaculture, the sex determination system (SDS) of Nile tilapia, Oreochromis niloticus, has been widely investigated. In this species, sex determination is considered to be governed by the interactions between a complex system of genetic sex determination factors (GSD) and the influence of temperature (TSD) during a critical period. Previous studies were exclusively carried out on domestic stocks with the genetic and maintenance limitations associated. Given the wide distribution and adaptation potential of the Nile tilapia, we investigated under controlled conditions the sex determination system of natural populations adapted to three extreme thermal regimes: stable extreme environments in Ethiopia, either cold temperatures in a highland lake (Lake Koka), or warm temperatures in hydrothermal springs (Lake Metahara), and an environment with large seasonal variations in Ghana (Kpandu, Lake Volta). The sex ratio analysis was conducted on progenies reared under constant basal (27 degrees C) or high (36 degrees C) temperatures during the 30 days following yolk-sac resorption. Sex ratios of the progenies reared at standard temperature suggest that the three populations share a similar complex GSD system based on a predominant male heterogametic factor with additional influences of polymorphism at this locus and/or action of minor factors. The three populations presented a clear thermosensitivity of sex differentiation, with large variations in the intensity of response depending on the parents. This confirms the presence of genotype-environment interactions in TSD of Nile tilapia. Furthermore the existence of naturally sex-reversed individuals is strongly suggested in two populations (Kpandu and Koka). However, it was not possible here to infer if the sex-inversion resulted from minor genetic factors and/or environmental influences. The present study demonstrated for the first time the conservation of a complex SDS combining polymorphic GSD and TSD components in natural populations of Nile tilapia. We discuss the evolutionary implications of our findings and highlight the importance of field investigations of sex determination. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This review deals with the complex sex determining system of Nile tilapia, Oreochromis niloticus, governed by the interactions between a genetic determination and the influence of temperature, shown in both domestic and wild populations. Naturally sex reversed individuals are strongly suggested in two wild populations. This can be due to the masculinising temperatures which some fry encounter during their sex differentiation period when they colonise shallow waters, and/or to the influence of minor genetic factors. Differences regarding a) thermal responsiveness of sex ratios between and within Nile tilapia populations, b) maternal and paternal effects on temperature dependent sex ratios and c) nearly identical results in offspring of repeated matings, demonstrate that thermosensitivity is under genetic control. Selection experiments to increase the thermosensitivity revealed high responses in the high and low sensitive lines. The high-line showed ~ 90% males after 2 generations of selection whereas the weakly sensitive line had 54% males. This is the first evidence that a surplus of males in temperature treated groups can be selected as a quantitative trait. Expression profiles of several genes (Cyp19a, Foxl2, Amh, Sox9a,b) from the gonad and brain were analysed to define temperature action on the sex determining/differentiating cascade in tilapia. The coexistence of GSD and TSD is discussed.
Resumo:
In some gonochoristic species, sex is influenced not only by genotype at conception but also by the environment that offspring experience during early ontogeny (termed environmental sex determination or ESD). ESD is thought to be adaptive when seasonal variations in environmental conditions provide a sex-specific fitness advantage. In vertebrates, temperature is the most common determinant of sex, and seasonal variation in temperature serves as a temporal cue of environmental quality such as length of the growing season. Some environments, however, lack strong seasonal temperature fluctuations and other cues, particularly photoperiod, may provide a more reliable indicator of the environment offspring enter. We tested this hypothesis by rearing the offspring of the California grunion (Leuresthes tenuis, Ayres), which experiences low seasonal temperature variation in nature, under common garden conditions at three temperature and two photoperiod treatments. Our experiments revealed that both temperature and photoperiod significantly affected sex ratios in L. tenuis. More females were produced at cooler temperatures and longer day lengths, which is consistent with female biased sex ratios early in the breeding season, and likely adaptive through increased female size and fecundity. To our knowledge, this is the first documented case of photoperiod-dependent sex determination in a gonochoristic vertebrate.
Resumo:
Growth hormone (GH) binding to its receptor modulates gene transcription by influencing the amount or activity of transcription factors. In the rat, GH exerts sexually dimorphic effects on liver gene transcription through its pattern of secretion which is intermittent in males and continuous in females. The expression of the CYP2C12 gene coding for the female-specific cytochrome P450 2C12 protein is dependent on the continuous exposure to GH. To identify the transcription factor(s) that mediate(s) this sex-dependent GH effect, we studied the interactions of the CYP2C12 promoter with liver nuclear proteins obtained from male and female rats and from hypophysectomized animals treated or not by continuous GH infusion. GH treatment induced the binding of a protein that we identified as hepatocyte nuclear factor (HNF) 6, the prototype of a novel class of homeodomain transcription factors. HNF-6 competed with HNF-3 for binding to the same site in the CYP2C12 promoter. This HNF-6/HNF-3 binding site conveyed both HNF-6- and HNF-3-stimulated transcription of a reporter gene construct in transient cotransfection experiments. Electrophoretic mobility shift assays showed more HNF-6 DNA-binding activity in female than in male liver nuclear extracts. Liver HNF-6 mRNA was barely detectable in the hypophysectomized rats and was restored to normal levels by GH treatment. This work provides an example of a homeodomain-containing transcription factor that is GH-regulated and also reports on the hormonal regulation of HNF-6.
Resumo:
Mutations in the ATRX gene on the human X chromosome cause X-linked α-thalassemia and mental retardation. XY patients with deletions or mutations in this gene display varying degrees of sex reversal, implicating ATRX in the development of the human testis. To explore further the role of ATRX in mammalian sex differentiation, the homologous gene was cloned and characterized in a marsupial. Surprisingly, active homologues of ATRX were detected on the marsupial Y as well as the X chromosome. The Y-borne copy (ATRY) displays testis-specific expression. This, as well as the sex reversal of ATRX patients, suggests that ATRY is involved in testis development in marsupials and may represent an ancestral testis-determining mechanism that predated the evolution of SRY as the primary mammalian male sex-determining gene. There is no evidence for a Y-borne ATRX homologue in mouse or human, implying that this gene has been lost in eutherians and its role supplanted by the evolution of SRY from SOX3 as the dominant determiner of male differentiation.
Resumo:
We have isolated a new Drosophila mutant, satori (sat), the males of which do not court or copulate with female flies. The sat mutation comaps with fruitless (fru) at 91B and does not rescue the bisexual phenotype of fru, indicating that sat is allelic to fru (fru(sat)). The fru(sat) adult males lack a male-specific muscle, the muscle of Lawrence, as do adult males with other fru alleles. Molecular cloning and analyses of the genomic and complementary DNAs indicated that transcription of the fru locus yields several different transcripts. The sequence of fru cDNA clones revealed a long open reading frame that potentially encodes a putative transcription regulator with a BTB domain and two zinc finger motifs. In the 5' noncoding region, three putative transformer binding sites were identified in the female transcript but not in male transcripts. The fru gene is expressed in a population of brain cells, including those in the antennal lobe, that have been suggested to be involved in determination of male sexual orientation. We suggest that fru functions downstream of tra in the sex-determination cascade in some neural cells and that inappropriate sexual development of these cells in the fru mutants results in altered sexual orientation of the fly.
Resumo:
Regulation of gene expression through alternative pre-mRNA splicing appears to occur in all metazoans, but most of our knowledge about splicing regulators derives from studies on genetically identified factors from Drosophila. Among the best studied of these is the transformer-2 (TRA-2) protein which, in combination with the transformer (TRA) protein, directs sex-specific splicing of pre-mRNA from the sex determination gene doublesex (dsx). Here we report the identification of htra-2 alpha, a human homologue of tra-2. Two alternative types of htra-2 alpha cDNA clones were identified that encode different protein isoforms with striking organizational similarity to Drosophila tra-2 proteins. When expressed in flies, one hTRA-2 alpha isoform partially replaces the function of Drosophila TRA-2, affecting both female sexual differentiation and alternative splicing of dsx pre-mRNA. Like Drosophila TRA-2, the ability of hTRA-2 alpha to regulate dsx is female-specific and depends on the presence of the dsx splicing enhancer. These results demonstrate that htra-2 alpha has conserved a striking degree of functional specificity during evolution and leads us to suggest that, although they are likely to serve different roles in development, the tra-2 products of flies and humans have similar molecular functions.
Resumo:
Primary sex determination in placental mammals is a very well studied developmental process. Here, we aim to investigate the currently established scenario and to assess its adequacy to fully recover the observed phenotypes, in the wild type and perturbed situations. Computational modelling allows clarifying network dynamics, elucidating crucial temporal constrains as well as interplay between core regulatory modules.
Resumo:
Mode of access: Internet.
Resumo:
London edition (G. Allen & Unwin, Ltd) has title: Is it a boy?
Resumo:
We investigated plasma hormone profiles of corticosterone and testosterone in immature hawksbill turtles (Eretmochelys imbricata) in response to a capture stress protocol. Further, we examined whether sex and body condition were covariates associated with variation in the adrenocortical response of immature turtles. Hawksbill turtles responded to the capture stress protocol by significantly increasing plasma levels of corticosterone over a 5 h period. There was no significant sex difference in the corticosterone stress response of immature turtles. Plasma testosterone profiles, while significantly different between the sexes, did not exhibit a significant change during the 5 h capture stress protocol. An index of body condition was not significantly associated with a turtle's capacity to produce plasma corticosterone both prior to and during exposure to the capture stress protocol. In summary, while immature hawksbill turtles exhibited an adrenocortical response to a capture stress protocol, neither their sex nor body condition was responsible for variation in endocrine responses. This lack of interaction between the adrenocortical response and these internal factors suggests that the inactive reproductive- and the current energetic- status of these immature turtles are important factors, that could influence plasma hormone profiles during stress. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
A critical gene involved in mammalian sex determination and differentiation is the Sty-related gene Sox9. In reptiles, Sox9 resembles that of mammals in both structure and expression pattern in the developing gonad, but a causal role in male sex determination has not been established. A closely related gene, Sox8, is conserved in human, mouse, and trout and is expressed in developing testes and not developing ovaries in mouse. In this study, we tested the possibility of Sox8 being important for sex determination or sex differentiation in the red-eared slider turtle Trachemys scripta, in which sex is determined by egg incubation temperature between stages 15 and 20. We cloned partial turtle Sox8 and anti-Mullerian hormone (Amh) cDNAs, and analyzed the expression patterns of these genes in developing gonads by reverse transcriptase-polymerase chain reaction and whole-mount in situ hybridization. While Amh is expressed more strongly in males than in females at stage 17, Sox8 is expressed at similar levels in males and females throughout the sex-determining period. These observations suggest that differential transcription of Sill is not responsible for regulation of Amh, nor responsible for sex determination in turtle. (C) 2004 Wiley-Liss, Inc.
Resumo:
Vertebrates use many different strategies to determine sex, but the Sox9 gene is a common thread, probably acting as the pivotal gene that controls the male-determining pathway. It now appears that Sox9 is not alone in this role, and that a closely related gene, Sox8, can partly substitute for Sox9. But is this a clever backup strategy to safeguard male development, or a relic of the past?