930 resultados para sequential speciation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider cooperative spectrum sensing for cognitive radios. We develop an energy efficient detector with low detection delay using sequential hypothesis testing. Sequential Probability Ratio Test (SPRT) is used at both the local nodes and the fusion center. We also analyse the performance of this algorithm and compare with the simulations. Modelling uncertainties in the distribution parameters are considered. Slow fading with and without perfect channel state information at the cognitive radios is taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers cooperative spectrum sensing in Cognitive Radios. In our previous work we have developed DualSPRT, a distributed algorithm for cooperative spectrum sensing using Sequential Probability Ratio Test (SPRT) at the Cognitive Radios as well as at the fusion center. This algorithm works well, but is not optimal. In this paper we propose an improved algorithm- SPRT-CSPRT, which is motivated from Cumulative Sum Procedures (CUSUM). We analyse it theoretically. We also modify this algorithm to handle uncertainties in SNR's and fading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider cooperative spectrum sensing for cognitive radios. We develop an energy efficient detector with low detection delay using sequential hypothesis testing. Sequential Probability Ratio Test (SPRT) is used at both the local nodes and the fusion center. We also analyse the performance of this algorithm and compare with the simulations. Modelling uncertainties in the distribution parameters are considered. Slow fading with and without perfect channel state information at the cognitive radios is taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper reports the synthesis of Nb/Si multilayers (48/27 nm) deposited on Si single crystal substrate by sequential laser ablation of elemental Nb and Si. Significant amount of Nb is found in the amorphous Si layer (similar to 25-35 at.% Nb). The Nb layer is found to be polycrystalline. The phase evolution of the multilayer has been studied by annealing at 600 degrees C for various times and carrying out cross sectional electron microscopic studies. We report the formation of amorphous silicide layer at the Nb/Si interface followed by the formation of the NbSi2 phase in the Si layer. Further annealing leads to the nucleation of hexagonal Nb5Si3 grains in amorphous silicide layers at Nb/NbSi2 interfaces. These results are different from those reported for sputter deposited multilayer. (C) 2013 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural Support Vector Machines (SSVMs) have recently gained wide prominence in classifying structured and complex objects like parse-trees, image segments and Part-of-Speech (POS) tags. Typical learning algorithms used in training SSVMs result in model parameters which are vectors residing in a large-dimensional feature space. Such a high-dimensional model parameter vector contains many non-zero components which often lead to slow prediction and storage issues. Hence there is a need for sparse parameter vectors which contain a very small number of non-zero components. L1-regularizer and elastic net regularizer have been traditionally used to get sparse model parameters. Though L1-regularized structural SVMs have been studied in the past, the use of elastic net regularizer for structural SVMs has not been explored yet. In this work, we formulate the elastic net SSVM and propose a sequential alternating proximal algorithm to solve the dual formulation. We compare the proposed method with existing methods for L1-regularized Structural SVMs. Experiments on large-scale benchmark datasets show that the proposed dual elastic net SSVM trained using the sequential alternating proximal algorithm scales well and results in highly sparse model parameters while achieving a comparable generalization performance. Hence the proposed sequential alternating proximal algorithm is a competitive method to achieve sparse model parameters and a comparable generalization performance when elastic net regularized Structural SVMs are used on very large datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our ability to regulate behavior based on past experience has thus far been examined using single movements. However, natural behavior typically involves a sequence of movements. Here, we examined the effect of previous trial type on the concurrent planning of sequential saccades using a unique paradigm. The task consisted of two trial types: no-shift trials, which implicitly encouraged the concurrent preparation of the second saccade in a subsequent trial; and target-shift trials, which implicitly discouraged the same in the next trial. Using the intersaccadic interval as an index of concurrent planning, we found evidence for context-based preparation of sequential saccades. We also used functional MRI-guided, single-pulse, transcranial magnetic stimulation on human subjects to test the role of the supplementary eye field (SEF) in the proactive control of sequential eye movements. Results showed that (i) stimulating the SEF in the previous trial disrupted the previous trial type-based preparation of the second saccade in the nonstimulated current trial, (ii) stimulating the SEF in the current trial rectified the disruptive effect caused by stimulation in the previous trial, and (iii) stimulating the SEF facilitated the preparation of second saccades based on previous trial type even when the previous trial was not stimulated. Taken together, we show how the human SEF is causally involved in proactive preparation of sequential saccades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sequence of moments obtained from statistical trials encodes a classical probability distribution. However, it is well known that an incompatible set of moments arises in the quantum scenario, when correlation outcomes associated with measurements on spatially separated entangled states are considered. This feature, viz., the incompatibility of moments with a joint probability distribution, is reflected in the violation of Bell inequalities. Here, we focus on sequential measurements on a single quantum system and investigate if moments and joint probabilities are compatible with each other. By considering sequential measurement of a dichotomic dynamical observable at three different time intervals, we explicitly demonstrate that the moments and the probabilities are inconsistent with each other. Experimental results using a nuclear magnetic resonance system are reported here to corroborate these theoretical observations, viz., the incompatibility of the three-time joint probabilities with those extracted from the moment sequence when sequential measurements on a single-qubit system are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider nonparametric or universal sequential hypothesis testing when the distribution under the null hypothesis is fully known but the alternate hypothesis corresponds to some other unknown distribution. These algorithms are primarily motivated from spectrum sensing in Cognitive Radios and intruder detection in wireless sensor networks. We use easily implementable universal lossless source codes to propose simple algorithms for such a setup. The algorithms are first proposed for discrete alphabet. Their performance and asymptotic properties are studied theoretically. Later these are extended to continuous alphabets. Their performance with two well known universal source codes, Lempel-Ziv code and KT-estimator with Arithmetic Encoder are compared. These algorithms are also compared with the tests using various other nonparametric estimators. Finally a decentralized version utilizing spatial diversity is also proposed and analysed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formation of a 2,3-dihydro-4H-pyran containing 14-membered macrocycle by sequential olefin cross metathesis and a highly regiospecific hetero Diels-Alder reaction was observed in the reaction of a hydroxydienone derived from tartaric acid with Grubbs' second generation catalyst. It was found that the free alcohol in the hydroxyenone led to the macrocycle formation, while protection of the hydroxy group formed the ring closing metathesis product. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural Support Vector Machines (SSVMs) and Conditional Random Fields (CRFs) are popular discriminative methods used for classifying structured and complex objects like parse trees, image segments and part-of-speech tags. The datasets involved are very large dimensional, and the models designed using typical training algorithms for SSVMs and CRFs are non-sparse. This non-sparse nature of models results in slow inference. Thus, there is a need to devise new algorithms for sparse SSVM and CRF classifier design. Use of elastic net and L1-regularizer has already been explored for solving primal CRF and SSVM problems, respectively, to design sparse classifiers. In this work, we focus on dual elastic net regularized SSVM and CRF. By exploiting the weakly coupled structure of these convex programming problems, we propose a new sequential alternating proximal (SAP) algorithm to solve these dual problems. This algorithm works by sequentially visiting each training set example and solving a simple subproblem restricted to a small subset of variables associated with that example. Numerical experiments on various benchmark sequence labeling datasets demonstrate that the proposed algorithm scales well. Further, the classifiers designed are sparser than those designed by solving the respective primal problems and demonstrate comparable generalization performance. Thus, the proposed SAP algorithm is a useful alternative for sparse SSVM and CRF classifier design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our work is motivated by impromptu (or ``as-you-go'') deployment of wireless relay nodes along a path, a need that arises in many situations. In this paper, the path is modeled as starting at the origin (where there is the data sink, e.g., the control center), and evolving randomly over a lattice in the positive quadrant. A person walks along the path deploying relay nodes as he goes. At each step, the path can, randomly, either continue in the same direction or take a turn, or come to an end, at which point a data source (e.g., a sensor) has to be placed, that will send packets to the data sink. A decision has to be made at each step whether or not to place a wireless relay node. Assuming that the packet generation rate by the source is very low, and simple link-by-link scheduling, we consider the problem of sequential relay placement so as to minimize the expectation of an end-to-end cost metric (a linear combination of the sum of convex hop costs and the number of relays placed). This impromptu relay placement problem is formulated as a total cost Markov decision process. First, we derive the optimal policy in terms of an optimal placement set and show that this set is characterized by a boundary (with respect to the position of the last placed relay) beyond which it is optimal to place the next relay. Next, based on a simpler one-step-look-ahead characterization of the optimal policy, we propose an algorithm which is proved to converge to the optimal placement set in a finite number of steps and which is faster than value iteration. We show by simulations that the distance threshold based heuristic, usually assumed in the literature, is close to the optimal, provided that the threshold distance is carefully chosen. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers cooperative spectrum sensing algorithms for Cognitive Radios which focus on reducing the number of samples to make a reliable detection. We propose algorithms based on decentralized sequential hypothesis testing in which the Cognitive Radios sequentially collect the observations, make local decisions and send them to the fusion center for further processing to make a final decision on spectrum usage. The reporting channel between the Cognitive Radios and the fusion center is assumed more realistically as a Multiple Access Channel (MAC) with receiver noise. Furthermore the communication for reporting is limited, thereby reducing the communication cost. We start with an algorithm where the fusion center uses an SPRT-like (Sequential Probability Ratio Test) procedure and theoretically analyze its performance. Asymptotically, its performance is close to the optimal centralized test without fusion center noise. We further modify this algorithm to improve its performance at practical operating points. Later we generalize these algorithms to handle uncertainties in SNR and fading. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concurrent planning of sequential saccades offers a simple model to study the nature of visuomotor transformations since the second saccade vector needs to be remapped to foveate the second target following the first saccade. Remapping is thought to occur through egocentric mechanisms involving an efference copy of the first saccade that is available around the time of its onset. In contrast, an exocentric representation of the second target relative to the first target, if available, can be used to directly code the second saccade vector. While human volunteers performed a modified double-step task, we examined the role of exocentric encoding in concurrent saccade planning by shifting the first target location well before the efference copy could be used by the oculomotor system. The impact of the first target shift on concurrent processing was tested by examining the end-points of second saccades following a shift of the second target during the first saccade. The frequency of second saccades to the old versus new location of the second target, as well as the propagation of first saccade localization errors, both indices of concurrent processing, were found to be significantly reduced in trials with the first target shift compared to those without it. A similar decrease in concurrent processing was obtained when we shifted the first target but kept constant the second saccade vector. Overall, these results suggest that the brain can use relatively stable visual landmarks, independent of efference copy-based egocentric mechanisms, for concurrent planning of sequential saccades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider nonparametric sequential hypothesis testing problem when the distribution under the null hypothesis is fully known but the alternate hypothesis corresponds to a general family of distributions. We propose a simple algorithm to address the problem. Its performance is analysed and asymptotic properties are proved. The simulated and analysed performance of the algorithm is compared with an earlier algorithm addressing the same problem with similar assumptions. Finally, we provide a justification for our model motivated by a Cognitive Radio scenario and modify the algorithm for optimizing performance when information about the prior probabilities of occurrence of the two hypotheses is available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a distributed sequential algorithm for quick detection of spectral holes in a Cognitive Radio set up. Two or more local nodes make decisions and inform the fusion centre (FC) over a reporting Multiple Access Channel (MAC), which then makes the final decision. The local nodes use energy detection and the FC uses mean detection in the presence of fading, heavy-tailed electromagnetic interference (EMI) and outliers. The statistics of the primary signal, channel gain and the EMI is not known. Different nonparametric sequential algorithms are compared to choose appropriate algorithms to be used at the local nodes and the Fe. Modification of a recently developed random walk test is selected for the local nodes for energy detection as well as at the fusion centre for mean detection. We show via simulations and analysis that the nonparametric distributed algorithm developed performs well in the presence of fading, EMI and outliers. The algorithm is iterative in nature making the computation and storage requirements minimal.