878 resultados para semi-Markov decision process
Resumo:
This paper introduces systems of exchange values as tools for the organization of multi-agent systems. Systems of exchange values are defined on the basis of the theory of social exchanges, developed by Piaget and Homans. A model of social organization is proposed, where social relations are construed as social exchanges and exchange values are put into use in the support of the continuity of the performance of social exchanges. The dynamics of social organizations is formulated in terms of the regulation of exchanges of values, so that social equilibrium is connected to the continuity of the interactions. The concept of supervisor of social equilibrium is introduced as a centralized mechanism for solving the problem of the equilibrium of the organization The equilibrium supervisor solves such problem making use of a qualitative Markov Decision Process that uses numerical intervals for the representation of exchange values.
Resumo:
The challenge of detecting a change in the distribution of data is a sequential decision problem that is relevant to many engineering solutions, including quality control and machine and process monitoring. This dissertation develops techniques for exact solution of change-detection problems with discrete time and discrete observations. Change-detection problems are classified as Bayes or minimax based on the availability of information on the change-time distribution. A Bayes optimal solution uses prior information about the distribution of the change time to minimize the expected cost, whereas a minimax optimal solution minimizes the cost under the worst-case change-time distribution. Both types of problems are addressed. The most important result of the dissertation is the development of a polynomial-time algorithm for the solution of important classes of Markov Bayes change-detection problems. Existing techniques for epsilon-exact solution of partially observable Markov decision processes have complexity exponential in the number of observation symbols. A new algorithm, called constellation induction, exploits the concavity and Lipschitz continuity of the value function, and has complexity polynomial in the number of observation symbols. It is shown that change-detection problems with a geometric change-time distribution and identically- and independently-distributed observations before and after the change are solvable in polynomial time. Also, change-detection problems on hidden Markov models with a fixed number of recurrent states are solvable in polynomial time. A detailed implementation and analysis of the constellation-induction algorithm are provided. Exact solution methods are also established for several types of minimax change-detection problems. Finite-horizon problems with arbitrary observation distributions are modeled as extensive-form games and solved using linear programs. Infinite-horizon problems with linear penalty for detection delay and identically- and independently-distributed observations can be solved in polynomial time via epsilon-optimal parameterization of a cumulative-sum procedure. Finally, the properties of policies for change-detection problems are described and analyzed. Simple classes of formal languages are shown to be sufficient for epsilon-exact solution of change-detection problems, and methods for finding minimally sized policy representations are described.
Resumo:
Natural language processing has achieved great success in a wide range of ap- plications, producing both commercial language services and open-source language tools. However, most methods take a static or batch approach, assuming that the model has all information it needs and makes a one-time prediction. In this disser- tation, we study dynamic problems where the input comes in a sequence instead of all at once, and the output must be produced while the input is arriving. In these problems, predictions are often made based only on partial information. We see this dynamic setting in many real-time, interactive applications. These problems usually involve a trade-off between the amount of input received (cost) and the quality of the output prediction (accuracy). Therefore, the evaluation considers both objectives (e.g., plotting a Pareto curve). Our goal is to develop a formal understanding of sequential prediction and decision-making problems in natural language processing and to propose efficient solutions. Toward this end, we present meta-algorithms that take an existent batch model and produce a dynamic model to handle sequential inputs and outputs. Webuild our framework upon theories of Markov Decision Process (MDP), which allows learning to trade off competing objectives in a principled way. The main machine learning techniques we use are from imitation learning and reinforcement learning, and we advance current techniques to tackle problems arising in our settings. We evaluate our algorithm on a variety of applications, including dependency parsing, machine translation, and question answering. We show that our approach achieves a better cost-accuracy trade-off than the batch approach and heuristic-based decision- making approaches. We first propose a general framework for cost-sensitive prediction, where dif- ferent parts of the input come at different costs. We formulate a decision-making process that selects pieces of the input sequentially, and the selection is adaptive to each instance. Our approach is evaluated on both standard classification tasks and a structured prediction task (dependency parsing). We show that it achieves similar prediction quality to methods that use all input, while inducing a much smaller cost. Next, we extend the framework to problems where the input is revealed incremen- tally in a fixed order. We study two applications: simultaneous machine translation and quiz bowl (incremental text classification). We discuss challenges in this set- ting and show that adding domain knowledge eases the decision-making problem. A central theme throughout the chapters is an MDP formulation of a challenging problem with sequential input/output and trade-off decisions, accompanied by a learning algorithm that solves the MDP.
Resumo:
This paper introduces a new technique for optimizing the trading strategy of brokers that autonomously trade in re- tail and wholesale markets. Simultaneous optimization of re- tail and wholesale strategies has been considered by existing studies as intractable. Therefore, each of these strategies is optimized separately and their interdependence is generally ignored, with resulting broker agents not aiming for a glob- ally optimal retail and wholesale strategy. In this paper, we propose a novel formalization, based on a semi-Markov deci- sion process (SMDP), which globally and simultaneously op- timizes retail and wholesale strategies. The SMDP is solved using hierarchical reinforcement learning (HRL) in multi- agent environments. To address the curse of dimensionality, which arises when applying SMDP and HRL to complex de- cision problems, we propose an ecient knowledge transfer approach. This enables the reuse of learned trading skills in order to speed up the learning in new markets, at the same time as making the broker transportable across market envi- ronments. The proposed SMDP-broker has been thoroughly evaluated in two well-established multi-agent simulation en- vironments within the Trading Agent Competition (TAC) community. Analysis of controlled experiments shows that this broker can outperform the top TAC-brokers. More- over, our broker is able to perform well in a wide range of environments by re-using knowledge acquired in previously experienced settings.
Resumo:
An Asset Management (AM) life-cycle constitutes a set of processes that align with the development, operation and maintenance of assets, in order to meet the desired requirements and objectives of the stake holders of the business. The scope of AM is often broad within an organization due to the interactions between its internal elements such as human resources, finance, technology, engineering operation, information technology and management, as well as external elements such as governance and environment. Due to the complexity of the AM processes, it has been proposed that in order to optimize asset management activities, process modelling initiatives should be adopted. Although organisations adopt AM principles and carry out AM initiatives, most do not document or model their AM processes, let alone enacting their processes (semi-) automatically using a computer-supported system. There is currently a lack of knowledge describing how to model AM processes through a methodical and suitable manner so that the processes are streamlines and optimized and are ready for deployment in a computerised way. This research aims to overcome this deficiency by developing an approach that will aid organisations in constructing AM process models quickly and systematically whilst using the most appropriate techniques, such as workflow technology. Currently, there is a wealth of information within the individual domains of AM and workflow. Both fields are gaining significant popularity in many industries thus fuelling the need for research in exploring the possible benefits of their cross-disciplinary applications. This research is thus inspired to investigate these two domains to exploit the application of workflow to modelling and execution of AM processes. Specifically, it will investigate appropriate methodologies in applying workflow techniques to AM frameworks. One of the benefits of applying workflow models to AM processes is to adapt and enable both ad-hoc and evolutionary changes over time. In addition, this can automate an AM process as well as to support the coordination and collaboration of people that are involved in carrying out the process. A workflow management system (WFMS) can be used to support the design and enactment (i.e. execution) of processes and cope with changes that occur to the process during the enactment. So far few literatures can be found in documenting a systematic approach to modelling the characteristics of AM processes. In order to obtain a workflow model for AM processes commonalities and differences between different AM processes need to be identified. This is the fundamental step in developing a conscientious workflow model for AM processes. Therefore, the first stage of this research focuses on identifying the characteristics of AM processes, especially AM decision making processes. The second stage is to review a number of contemporary workflow techniques and choose a suitable technique for application to AM decision making processes. The third stage is to develop an intermediate ameliorated AM decision process definition that improves the current process description and is ready for modelling using the workflow language selected in the previous stage. All these lead to the fourth stage where a workflow model for an AM decision making process is developed. The process model is then deployed (semi-) automatically in a state-of-the-art WFMS demonstrating the benefits of applying workflow technology to the domain of AM. Given that the information in the AM decision making process is captured at an abstract level within the scope of this work, the deployed process model can be used as an executable guideline for carrying out an AM decision process in practice. Moreover, it can be used as a vanilla system that, once being incorporated with rich information from a specific AM decision making process (e.g. in the case of a building construction or a power plant maintenance), is able to support the automation of such a process in a more elaborated way.
Resumo:
Acoustic sensors allow scientists to scale environmental monitoring over large spatiotemporal scales. The faunal vocalisations captured by these sensors can answer ecological questions, however, identifying these vocalisations within recorded audio is difficult: automatic recognition is currently intractable and manual recognition is slow and error prone. In this paper, a semi-automated approach to call recognition is presented. An automated decision support tool is tested that assists users in the manual annotation process. The respective strengths of human and computer analysis are used to complement one another. The tool recommends the species of an unknown vocalisation and thereby minimises the need for the memorization of a large corpus of vocalisations. In the case of a folksonomic tagging system, recommending species tags also minimises the proliferation of redundant tag categories. We describe two algorithms: (1) a “naïve” decision support tool (16%–64% sensitivity) with efficiency of O(n) but which becomes unscalable as more data is added and (2) a scalable alternative with 48% sensitivity and an efficiency ofO(log n). The improved algorithm was also tested in a HTML-based annotation prototype. The result of this work is a decision support tool for annotating faunal acoustic events that may be utilised by other bioacoustics projects.
Resumo:
Decision strategies aim at enabling reasonable decisions in cases of uncertain policy decision problems which do not meet the conditions for applying standard decision theory. This paper focuses on decision strategies that account for uncertainties by deciding whether a proposed list of policy options should be accepted or revised (scope strategies) and whether to decide now or later (timing strategies). They can be used in participatory approaches to structure the decision process. As a basis, we propose to classify the broad range of uncertainties affecting policy decision problems along two dimensions, source of uncertainty (incomplete information, inherent indeterminacy and unreliable information) and location of uncertainty (information about policy options, outcomes and values). Decision strategies encompass multiple and vague criteria to be deliberated in application. As an example, we discuss which decision strategies may account for the uncertainties related to nutritive technologies that aim at reducing methane (CH4) emissions from ruminants as a means of mitigating climate change, limiting our discussion to published scientific information. These considerations not only speak in favour of revising rather than accepting the discussed list of options, but also in favour of active postponement or semi-closure of decision-making rather than closure or passive postponement.
Resumo:
Many cities around the globe are now considering tourism facilities and their remarkable revenues in order to become competitive in the global economy. In many of these cities a great emphasis is given to the cultural tourism as it plays an important role in the establishment of creative and knowledge-base of cities. The literature points out the importance of local community support in cultural tourism. In such context, the use of new approach and technologies in tourism planning in order to increase the community participation and competitiveness of cities’ cultural assets gains a great significance. This paper advocates a new planning approach for tourism planning, particularly for cultural tourism, to increase the competitiveness of cities. As part of this new approach, the paper introduces the joined up planning approach integrated with a collaborative decision support system: ‘the community-oriented decision support system’. This collaborative planning support system is an effective and efficient tool for cultural tourism planning, which provides a platform for local communities’ participation in the development decision process.
Resumo:
Introduction: Some types of antimicrobial-coated central venous catheters (A-CVC) have been shown to be cost-effective in preventing catheter-related bloodstream infection (CR-BSI). However, not all types have been evaluated, and there are concerns over the quality and usefulness of these earlier studies. There is uncertainty amongst clinicians over which, if any, antimicrobial-coated central venous catheters to use. We re-evaluated the cost-effectiveness of all commercially available antimicrobialcoated central venous catheters for prevention of catheter-related bloodstream infection in adult intensive care unit (ICU) patients. Methods: We used a Markov decision model to compare the cost-effectiveness of antimicrobial-coated central venous catheters relative to uncoated catheters. Four catheter types were evaluated; minocycline and rifampicin (MR)-coated catheters; silver, platinum and carbon (SPC)-impregnated catheters; and two chlorhexidine and silver sulfadiazine-coated catheters, one coated on the external surface (CH/SSD (ext)) and the other coated on both surfaces (CH/SSD (int/ext)). The incremental cost per qualityadjusted life-year gained and the expected net monetary benefits were estimated for each. Uncertainty arising from data estimates, data quality and heterogeneity was explored in sensitivity analyses. Results: The baseline analysis, with no consideration of uncertainty, indicated all four types of antimicrobial-coated central venous catheters were cost-saving relative to uncoated catheters. Minocycline and rifampicin-coated catheters prevented 15 infections per 1,000 catheters and generated the greatest health benefits, 1.6 quality-adjusted life-years, and cost-savings, AUD $130,289. After considering uncertainty in the current evidence, the minocycline and rifampicin-coated catheters returned the highest incremental monetary net benefits of $948 per catheter; but there was a 62% probability of error in this conclusion. Although the minocycline and rifampicin-coated catheters had the highest monetary net benefits across multiple scenarios, the decision was always associated with high uncertainty. Conclusions: Current evidence suggests that the cost-effectiveness of using antimicrobial-coated central venous catheters within the ICU is highly uncertain. Policies to prevent catheter-related bloodstream infection amongst ICU patients should consider the cost-effectiveness of competing interventions in the light of this uncertainty. Decision makers would do well to consider the current gaps in knowledge and the complexity of producing good quality evidence in this area.
Resumo:
Purpose – In the context of global knowledge economy, knowledge-based urban development (KBUD) is seen as an effective development strategy for city-regions to survive, flourish and become highly competitive urban agglomerations – i.e., a knowledge city-region. This paper aims to evaluate the KBUD dynamics, capacity and potentials of a rapidly emerging knowledge city-region of Finland – Tampere region. Design/methodology/approach – The paper undertakes a review of the literature on regional development in the knowledge economy era. It adopts a qualitative analysis technique to scrutinize the dynamics, capacity and potentials of Tampere region. The semi-structured interview process starts with the pre-determined key actors of the city-region with an aim of determining the other key players. Next, with the participation of all key players to the interviews, the research reveals the principal issues, assets and mechanisms that relate to KBUD, and portrays the strengths, weaknesses, opportunities and threats of the city-region. A critical analysis of the findings along with the previous studies is undertaken to provide a clear picture of the dynamics, capacity and potentials of the emerging knowledge city-region. Originality/value – This paper reports the findings of a pioneering study focusing on the investigation of the KBUD dynamics, capacity and potentials of Tampere region. The paper critically evaluates the city-region from the knowledge perspective with the lens of KBUD, and the lessons learned and the methodological approach of the paper shed light to other city-regions seeking such development. Practical implications – The paper discusses the findings of a study from Tampere region that critically scrutinizes the KBUD experience of the city-region. The research provides an invaluable opportunity to inform the regional decision-, policy- and plan-making mechanisms by determining key issues, actors, assets, processes and potential development directions for the KBUD of Tampere region.
Resumo:
A theoretical framework for a construction management decision evaluation system for project selection by means of a literature review. The theory is developed by the examination of the major factors concerning the project selection decision from a deterministic viewpoint, where the decision-maker is assumed to possess 'perfect knowledge' of all the aspects involved. Four fundamental project characteristics are identified together with three meaningful outcome variables. The relationship within and between these variables are considered together with some possible solution techniques. The theory is next extended to time-related dynamic aspects of the problem leading to the implications of imperfect knowledge and a nondeterministic model. A solution technique is proposed in which Gottinger's sequential machines are utilised to model the decision process,
Resumo:
This research investigates the decision making process of individuals from revealed preferences in extreme environments or life-and-death situations, from a behavioral economics perspective. The empirical analysis of revealed behavioral preferences shows how the individual decision making process can deviate from the standard self-interested or “homo economicus” model in non-standard situations. The environments examined include: elite athletes in FIFA World and Euro Cups; climbing on Everest and the Himalaya; communication during 9/11 and risk seeking after the 2011 Brisbane floods. The results reveal that the interaction of culture and environment has a significant impact on the decision process, as social behaviors and institutions are intimately intertwined, which govern the processes of human behavior and interaction. Additionally, that risk attitudes are not set and that immediate environmental factors can induce a significant shift in an individuals risk seeking behaviors.
Resumo:
This paper presents a case study for the application of a Linear Engineering Asset Renewal decision support software tool (LinEAR) at a water distribution network in Australia. This case study examines how the LinEAR can assist water utilities to minimise their total pipeline management cost, to make a long-term budget based on mathematically predicted expenditure, and to present calculated evidence for supporting their expenditure requirements. The outcomes from the study on pipeline renewal decision support demonstrate that LinEAR can help water utilities to improve the decision process and save renewal costs over a long-term by providing an optimum renewal schedules. This software can help organisation to accumulate technical knowledge and prediction future impact of the decision using what-if analysis.
Resumo:
Today, small-medium sized enterprises (SMEs) collectively contribute to the largest percentage of job creation in OECD countries. SMEs have become increasingly international since the turn of the century despite being smaller in size in comparison to large multinational firms, and notably, exporting is the most favoured mode of international market entry utilised by SMEs in their internationalisation strategy. Governments around the world have acknowledged the importance of export promotion and have employed policies that are targeted at increasing the export activity of SMEs. However, in many countries, the involvement of SMEs in export operations remains rather low. Within Australia, for example, only about one-third of local SMEs are exporting and this raises an important question as to why there is such a huge percentage of non-exporters. Much scholarly research that focuses on this problem has concentrated on the broad concept of 'export barriers' that act as obstacles to a firm's export development. This paper takes a different approach to previous studies and proposes that a firm's resistance to commence exporting can be better understood through an analysis of the behavioural decision process during its pre-export state. Using a sample of Australian SMEs, the factors that are important in preventing a firm’s initial export commencement decision are categorised and discussed through the use of factor analysis.