987 resultados para sediment deposition


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediment contaminants were monitored in Milford Haven Waterway (MHW) since 1978 (hydrocarbons) and 1982 (metals), with the aim of providing surveillance of environmental quality in one of the UK’s busiest oil and gas ports. This aim is particularly important during and after large-scale investment in liquefied natural gas (LNG) facilities. However, methods inevitably have changed over the years, compounding the difficulties of coordinating sampling and analytical programmes. After a review by the MHW Environmental Surveillance Group (MHWESG), sediment hydrocarbon chemistry was investigated in detail in 2010. Natural Resources Wales (NRW) contributed their MHW data for 2007 and 2012, collected to assess the condition of the Special Area of Conservation (SAC) designated under the European Union Habitats Directive. Datasets during 2007-2012 have thus been more comparable. The results showed conclusively that a MHW-wide peak in concentrations of sediment polycyclic aromatic hydrocarbons (PAHs), metals and other contaminants occurred in late 2007. This was corroborated by independent annual monitoring at one centrally-located station with peaks in early 2008 and 2011. The spatial and temporal patterns of recovery from the 2007 peak, shown by MHW-wide surveys in 2010 and 2012, indicate several probable causes of contaminant trends, as follows: atmospheric deposition, catchment runoff, sediment resuspension from dredging, and construction of two LNG terminals and a power station. Adverse biological effects predictable in 2007 using international sediment quality guidelines, were independently tested by data from monitoring schemes of more than a decade duration in MHW (starfish, limpets), and in the wider SAC (grey seals). Although not proving cause and effect, many of these potential biological receptors showed a simultaneous negative response to the elevated 2007 contamination following intense dredging activity in 2006. Wetland bird counts were typically at a peak in the winter of 2005-2006 previous to peak dredging. In the following winter 2006-2007, shelduck in Pembroke River showed their lowest winter count, and spring 2007 was the largest ever drop in numbers of broods across MHW between successive breeding seasons. Wigeon counts in Pembroke River were again low in late 2012 after further dredging nearby. These results are strongly supported by PAH data reported previously from invertebrate bioaccumulation studies in MHW 2007-2010, themselves closely reflecting sediment

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of the seasonal deposition of phytoplankton and phytodetritus on surface sediment bacterial abundance and community composition was investigated at the Western English Channel site L4. Sediment and water samples were collected from January to September in 2012, increasing in frequency during periods of high water column phytoplankton abundance. Compared to the past two decades, the spring bloom in 2012 was both unusually long in duration and contained higher than average biomass. Within spring months, the phytoplankton bloom was well mixed through the water column and showed accumulations near the sea bed, as evidenced by flow cytometry measurements of nanoeukaryotes, water column chlorophyll a and the appearance of pelagic phytoplankton at the sediment. Measurements of chlorophyll and chlorophyll degradation products indicated phytoplankton material was heavily degraded after it reached the sediment surface: the nature of the chlorophyll degradation products (predominantly pheophorbide, pyropheophorbide and hydroxychlorophyllone) was indicative of grazing activity. The abundance of bacterial 16S rRNA genes g−1 sediment (used as a proxy for bacterial biomass) increased markedly with the onset of the phytoplankton bloom, and correlated with measurements of chlorophyll at the surface sediment. Together, this suggests that bacteria may have responded to nutrients released via grazing activity. In depth sequencing of the 16S rRNA genes indicated that the composition of the bacterial community shifted rapidly through-out the prolonged spring bloom period. This was primarily due to an increase in the relative sequence abundance of Flavobacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present data showing that arsenic (As) was codeposited with organic carbon (OC) in Bengal Delta sediments as As and OC concentrations are highly (p < 0.001) positively correlated in core profiles collected from widely dispersed geographical sites with different sedimentary depositional histories. Analysis of modern day depositional environments revealed that the As/OC correlations observed in cores are due to As retention and high OC inputs in vegetated zones of the deltaic environment. We hypothesize that elevated concentrations of As occur in vegetated wetland sediments due to concentration and retention of arsenate in aerated root zones and animal burrows where copious iron(III) oxides are deposited. On burial of the sediment, degradation of organic carbon from plant and animal biomass detritus provides the reducing conditions to dissolve iron(III) oxides and release arsenite into the porewater. As tubewell abstracted aquifer water is an invaluable resource on which much of Southeast Asia is now dependent, this increased understanding of the processes responsible for As buildup and release will identify, through knowledge of the palaeosedimentary environment, which sediments are at most risk of having high arsenic concentrations in porewater. Our data allow the development of a new unifying hypothesis of how As is mobilized into groundwaters in river flood plains and deltas of Southeast Asia, namely that in these highly biologically productive environments, As and OC are codeposited, and the codeposited OC drives As release from the sediments. We present data showing that arsenic (As) was codeposited with organic carbon (OC) in Bengal Delta sediments as As and OC concentrations are highly (p < 0.001) positively correlated in core profiles collected from widely dispersed geographical sites with different sedimentary depositional histories. Analysis of modern day depositional environments revealed that the As?OC correlations observed in cores are due to As retention and high OC inputs in vegetated zones of the deltaic environment. We hypothesize that elevated concentrations of As occur in vegetated wetland sediments due to concentration and retention of arsenate in aerated root zones and animal burrows where copious iron(III) oxides are deposited. On burial of the sediment, degradation of organic carbon from plant and animal biomass detritus provides the reducing conditions to dissolve iron(III) oxides and release arsenite into the porewater. As tubewell abstracted aquifer water is an invaluable resource on which much of Southeast Asia is now dependent, this increased understanding of the processes responsible for As buildup and release will identify, through knowledge of the palaeosedimentary environment, which sediments are at most risk of having high arsenic concentrations in porewater. Our data allow the development of a new unifying hypothesis of how As is mobilized into groundwaters in river flood plains and deltas of Southeast Asia, namely that in these highly biologically productive environments, As and OC are codeposited, and the codeposited OC drives As release from the sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Late Pleistocene to Holocene margin sedimentation on the Great Barrier Reef, a mixed carbonatesiliciclastic margin, has been explained by a transgressive shedding model. This model has challenged widely accepted sequence stratigraphic models in terms of the timing and type of sediment (i.e. carbonate vs. siliciclastic) deposited during sea-level oscillations. However, this model documents only hemipelagic sedimentation and the contribution of coarse-grained turbidite deposition, and the role of submarine canyons in this process, remain elusive on this archetypal margin. Here we present a new model of turbidite deposition for the last 60 ky in the north-eastern Australia margin. Using highresolution bathymetry, 58 new and existing radiometric ages, and the composition of 81 turbidites from 15 piston cores, we found that the spatial and temporal variation of turbidites is controlled by the relationship between sea-level change and the variable physiography along the margin. Siliciclastic and mixed carbonate-siliciclastic turbidites were linked to canyons indenting the shelf-break and the welldeveloped shelf-edge reef barriers that stored sediment behind them. Turbidite deposition was sustained while the sea-level position allowed the connection and sediment bypassing through the interreef passages and canyons. Carbonate turbidites dominated in regions with more open conditions at the outer-shelf and where slope-confined canyons dominated or where canyons are generally less abundant. The turn-on and maintenance of carbonate production during sea-level fluctuations also influenced the timing of carbonate turbidite deposition. We show that a fundamental understanding of the variable physiography inherent to mixed carbonate-siliciclastic margins is essential to accurately interpret deep-water, coarse-grained deposition within a sequence stratigraphic context. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Age-depth modeling using Bayesian statistics requires well-informed prior information about the behavior of sediment accumulation. Here we present average sediment accumulation rates (represented as deposition times, DT, in yr/cm) for lakes in an Arctic setting, and we examine the variability across space (intra- and inter-lake) and time (late Holocene). The dataset includes over 100 radiocarbon dates, primarily on bulk sediment, from 22 sediment cores obtained from 18 lakes spanning the boreal to tundra ecotone gradients in subarctic Canada. There are four to twenty-five radiocarbon dates per core, depending on the length and character of the sediment records. Deposition times were calculated at 100-year intervals from age-depth models constructed using the ‘classical’ age-depth modeling software Clam. Lakes in boreal settings have the most rapid accumulation (mean DT 20 ± 10 years), whereas lakes in tundra settings accumulate at moderate (mean DT 70 ± 10 years) to very slow rates, (>100 yr/cm). Many of the age-depth models demonstrate fluctuations in accumulation that coincide with lake evolution and post-glacial climate change. Ten of our sediment cores yielded sediments as old as c. 9,000 cal BP (BP = years before AD 1950). From between c. 9,000 cal BP and c. 6,000 cal BP, sediment accumulation was relatively rapid (DT of 20 to 60 yr/cm). Accumulation slowed between c. 5,500 and c. 4,000 cal BP as vegetation expanded northward in response to warming. A short period of rapid accumulation occurred near 1,200 cal BP at three lakes. Our research will help inform priors in Bayesian age modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Samples of fine-grained channel bed sediment and overbank floodplain deposits were collected along the main channels of the Rivers Aire (and its main tributary, the River Calder) and Swale, in Yorkshire, UK, in order to investigate downstream changes in the storage and deposition of heavy metals (Cr, Cu, Pb, Zn), total P and the sum of selected PCB congeners, and to estimate the total storage of these contaminants within the main channels and floodplains of these river systems. Downstream trends in the contaminant content of the <63 μm fraction of channel bed and floodplain sediment in the study rivers are controlled mainly by the location of the main sources of the contaminants, which varies between rivers. In the Rivers Aire and Calder, the contaminant content of the <63 μm fraction of channel bed and floodplain sediment generally increases in a downstream direction, reflecting the location of the main urban and industrialized areas in the middle and lower parts of the basin. In the River Swale, the concentrations of most of the contaminants examined are approximately constant along the length of the river, due to the relatively unpolluted nature of this river. However, the Pb and Zn content of fine channel bed sediment decreases downstream, due to the location of historic metal mines in the headwaters of this river, and the effect of downstream dilution with uncontaminated sediment. The magnitude and spatial variation of contaminant storage and deposition on channel beds and floodplains are also controlled by the amount of <63 μm sediment stored on the channel bed and deposited on the floodplain during overbank events. Consequently, contaminant deposition and storage are strongly influenced by the surface area of the floodplain and channel bed. Contaminant storage on the channel beds of the study rivers is, therefore, generally greatest in the middle and lower reaches of the rivers, since channel width increases downstream. Comparisons of the estimates of total storage of specific contaminants on the channel beds of the main channel systems of the study rivers with the annual contaminant flux at the catchment outlets indicate that channel storage represents <3% of the outlet flux and is, therefore, of limited importance in regulating that flux. Similar comparisons between the annual deposition flux of specific contaminants to the floodplains of the study rivers and the annual contaminant flux at the catchment outlet, emphasise the potential importance of floodplain deposition as a conveyance loss. In the case of the River Aire the floodplain deposition flux is equivalent to between ca. 2% (PCBs) and 36% (Pb) of the outlet flux. With the exception of PCBs, for which the value is ≅0, the equivalent values for the River Swale range between 18% (P) and 95% (Pb). The study emphasises that knowledge of the fine-grained sediment delivery system operating in a river basin is an essential prerequisite for understanding the transport and storage of sediment-associated contaminants in river systems and that conveyance losses associated with floodplain deposition exert an important control on downstream contaminant fluxes and the fate of such contaminants. © 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Senior thesis written for Oceanography 445

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cochin estuarine system is among the most productive aquatic environment along the Southwest coast of India, exhibits unique ecological features and possess greater socioeconomic relevance. Serious investigations carried out during the past decades on the hydro biogeochemical variables pointed out variations in the health and ecological functioning of this ecosystem. Characterisation of organic matter in the estuary has been attempted in many investigations. But detailed studies covering the degradation state of organic matter using molecular level approach is not attempted. The thesis entitled Provenance, Isolation and Characterisation of Organic Matter in the Cochin Estuarine Sediment-“ A Diagenetic Amino Acid Marker Scenario” is an integrated approach to evaluate the source, quantity, quality, and degradation state of the organic matter in the surface sediments of Cochin estuarine system with the combined application of bulk and molecular level tools. Sediment and water samples from nine stations situated at Cochin estuary were collected in five seasonal sampling campaigns, for the biogeochemical assessment and their distribution pattern of sedimentary organic matter. The sampling seasons were described and abbreviated as follows: April- 2009 (pre monsoon: PRM09), August-2009 (monsoon: MON09), January-2010 (post monsoon: POM09), April-2010 (pre monsoon: PRM10) and September- 2012 (monsoon: MON12). In order to evaluate the general environmental conditions of the estuary, water samples were analysed for water quality parameters, chlorophyll pigments and nutrients by standard methods. Investigations suggested the fact that hydrographical variables and nutrients in Cochin estuary supports diverse species of flora and fauna. Moreover the sedimentary variables such as pH, Eh, texture, TOC, fractions of nitrogen and phosphorous were determined to assess the general geochemical setting as well as redox status. The periodically fluctuating oxic/ anoxic conditions and texture serve as the most significant variables controlling other variables of the aquatic environment. The organic matter in estuary comprise of a complex mixture of autochthonous as well as allochthonous materials. Autochthonous input is limited or enhanced by the nutrient elements like N and P (in their various fractions), used as a tool to evaluate their bioavailability. Bulk parameter approach like biochemical composition, stoichiometric elemental ratios and stable carbon isotope ratio was also employed to assess the quality and quantity of sedimentary organic matter in the study area. Molecular level charactersation of free sugars and amino acids were carried out by liquid chromatographic techniques. Carbohydrates are the products of primary production and their occurrence in sediments as free sugars can provide information on the estuarine productivity. Amino acid biogeochemistry provided implications on the system productivity, nature of organic matter as well as degradation status of the sedimentary organic matter in the study area. The predominance of carbohydrates over protein indicated faster mineralisation of proteinaceous organic matter in sediments and the estuary behaves as a detrital trap for the accumulation of aged organic matter. The higher lipid content and LPD/CHO ratio pointed towards the better food quality that supports benthic fauna and better accumulation of lipid compounds in the sedimentary environment. Allochthonous addition of carbohydrates via terrestrial run off was responsible for the lower PRT/CHO ratio estimated in thesediments and the lower ratios also denoted a detrital heterotrophic environment. Biopolymeric carbon and the algal contribution to BPC provided important information on the better understanding the trophic state of the estuarine system and the higher values of chlorophyll-a to phaeophytin ratio indicated deposition of phytoplankton to sediment at a rapid rate. The estimated TOC/TN ratios implied the combined input of both terrestrial and autochthonous organic matter to sedimentsAmong the free sugars, depleted levels of glucose in sediments in most of the stations and abundance of mannose at station S5 was observed during the present investigation. Among aldohexoses, concentration of galactose was found to be higher in most of the stationsRelative abundance of AAs in the estuarine sediments based on seasons followed the trend: PRM09-Leucine > Phenylalanine > Argine > Lysine, MON09-Lysine > Aspartic acid > Histidine > Tyrosine > Phenylalanine, POM09-Lysine > Histadine > Phenyalanine > Leucine > Methionine > Serine > Proline > Aspartic acid, PRM10-Valine > Aspartic acid > Histidine > Phenylalanine > Serine > Proline, MON12-Lysine > Phenylalanine > Aspartic acid > Histidine > Valine > Tyrsine > MethionineThe classification of study area into three zones based on salinity was employed in the present study for the sake of simplicity and generalized interpretations. The distribution of AAs in the three zones followed the trend: Fresh water zone (S1, S2):- Phenylalanine > Lysine > Aspartic acid > Methionine > Valine ῀ Leucine > Proline > Histidine > Glycine > Serine > Glutamic acid > Tyrosine > Arginine > Alanine > Threonine > Cysteine > Isoleucine. Estuarine zone (S3, S4, S5, S6):- Lysine > Aspartic acid > Phenylalanine > Leucine > Valine > Histidine > Methionine > Tyrosine > Serine > Glutamic acid > Proline > Glycine > Arginine > Alanine > Isoleucine > Cysteine > Threonine. Riverine /Industrial zone (S7, S8, S9):- Phenylalanine > Lysine > Aspartic acid > Histidine > Serine > Arginine > Tyrosine > Leucine > Methionine > Glutamic acid > Alanine > Glycine > Cysteine > Proline > Isoleucine > Threonine > Valine. The abundance of AAs like glutamic acid, aspartic acid, isoleucine, valine, tyrosine, and phenylalanine in sediments of the study area indicated freshly derived organic matter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Field studies were carried out on the water and sediment dynamics in the tropical, macro-tidal, Daly Estuary. The estuary is shallow, very-turbid, about 100 km long, and the entrance is funnel-shape. In the wet, high flow season, normal tidal ranges can be suppressed in the estuary, depending on inflow rates, and freshwater becomes dominant up to the mouth. At that time a fraction of the fine sediment load is exported offshore as a bottom-tagging nepheloid layer after the sediment falls out of suspension of the thin, near-surface, river plume. The remaining fraction and the riverine coarse sediment form a large sediment bar 10 km long, up to 6 m in height and extending across the whole width of the channel near the mouth. This bar, as well as shoals in the estuary, partially pond the mid- to upper-estuary. This bar builds up from the deposition of riverine sediment during a wet season with high runoff and can raise mean water level by up to 2 m in the upper estuary in the low flow season. This ponding effect takes about three successive dry years to disappear by the sediment forming the bar being redistributed all over the estuary by tidal pumping of fine and coarse sediment in the dry season, which is the low flow season. The swift reversal of the tidal currents from ebb to flood results in macro-turbulence that lasts about 20 min. Bed load transport is preferentially landward and occurs only for water currents greater than 0.6 m s(-1). This high value of the threshold velocity suggests that the sand may be cemented by the mud. The Daly Estuary thus is a leaky sediment trap with an efficiency varying both seasonally and inter-annually. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mineral dust aerosols in the atmosphere have the potential to affect the global climate by influencing the radiative balance of the atmosphere and the supply of micronutrients to the ocean. Ice and marine sediment cores indicate that dust deposition from the atmosphere was at some locations 2–20 times greater during glacial periods, raising the possibility that mineral aerosols might have contributed to climate change on glacial-interglacial time scales. To address this question, we have used linked terrestrial biosphere, dust source, and atmospheric transport models to simulate the dust cycle in the atmosphere for current and last glacial maximum (LGM) climates. We obtain a 2.5-fold higher dust loading in the entire atmosphere and a twenty-fold higher loading in high latitudes, in LGM relative to present. Comparisons to a compilation of atmospheric dust deposition flux estimates for LGM and present in marine sediment and ice cores show that the simulated flux ratios are broadly in agreement with observations; differences suggest where further improvements in the simple dust model could be made. The simulated increase in high-latitude dustiness depends on the expansion of unvegetated areas, especially in the high latitudes and in central Asia, caused by a combination of increased aridity and low atmospheric [CO2]. The existence of these dust source areas at the LGM is supported by pollen data and loess distribution in the northern continents. These results point to a role for vegetation feedbacks, including climate effects and physiological effects of low [CO2], in modulating the atmospheric distribution of dust.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presented work deals with the calibration of a 2D numerical model for the simulation of long term bed load transport. A settled basin along an alpine stream was used as a case study. The focus is to parameterise the used multi fractional transport model such that a dynamically balanced behavior regarding erosion and deposition is reached. The used 2D hydrodynamic model utilizes a multi-fraction multi-layer approach to simulate morphological changes and bed load transport. The mass balancing is performed between three layers: a top mixing layer, an intermediate subsurface layer and a bottom layer. Using this approach bears computational limitations in calibration. Due to the high computational demands, the type of calibration strategy is not only crucial for the result, but as well for the time required for calibration. Brute force methods such as Monte Carlo type methods may require a too large number of model runs. All here tested calibration strategies used multiple model runs utilising the parameterization and/or results from previous run. One concept was to reset to initial bed elevations after each run, allowing the resorting process to convert to stable conditions. As an alternative or in combination, the roughness was adapted, based on resulting nodal grading curves, from the previous run. Since the adaptations are a spatial process, the whole model domain is subdivided in homogeneous sections regarding hydraulics and morphological behaviour. For a faster optimization, the adaptation of the parameters is made section wise. Additionally, a systematic variation was done, considering results from previous runs and the interaction between sections. The used approach can be considered as similar to evolutionary type calibration approaches, but using analytical links instead of random parameter changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mineral dust is an important component of the Earth's climate system and provides essential nutrientsrnto oceans and rain forests. During atmospheric transport, dust particles directly and indirectly influencernweather and climate. The strength of dust sources and characteristics of the transport, in turn, mightrnbe subject to climatic changes. Earth system models help for a better understanding of these complexrnmechanisms.rnrnThis thesis applies the global climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for simulationsrnof the mineral dust cycle under different climatic conditions. The prerequisite for suitable modelrnresults is the determination of the model setup reproducing the most realistic dust cycle in the recentrnclimate. Simulations with this setup are used to gain new insights into properties of the transatlanticrndust transport from Africa to the Americas and adaptations of the model's climate forcing factors allowrnfor investigations of the impact of climatic changes on the dust cycle.rnrnIn the first part, the most appropriate model setup is determined through a number of sensitivity experiments.rnIt uses the dust emission parametrisation from Tegen et al. 2002 and a spectral resolutionrnof T85, corresponding to a horizontal grid spacing of about 155 km. Coarser resolutions are not able tornaccurately reproduce emissions from important source regions such as the Bodele Depression in Chad orrnthe Taklamakan Desert in Central Asia. Furthermore, the representation of ageing and wet deposition ofrndust particles in the model requires a basic sulphur chemical mechanism. This setup is recommended forrnfuture simulations with EMAC focusing on mineral dust.rnrnOne major branch of the global dust cycle is the long-range transport from the world's largest dustrnsource, the Sahara, across the Atlantic Ocean. Seasonal variations of the main transport pathways to thernAmazon Basin in boreal winter and to the Caribbean during summer are well known and understood,rnand corroborated in this thesis. Both Eulerian and Lagrangian methods give estimates on the typicalrntransport times from the source regions to the deposition on the order of nine to ten days. Previously, arnhuge proportion of the dust transported across the Atlantic Ocean has been attributed to emissions fromrnthe Bodele Depression. However, the contribution of this hot spot to the total transport is very low inrnthe present results, although the overall emissions from this region are comparable. Both model resultsrnand data sets analysed earlier, such as satellite products, involve uncertainties and this controversy aboutrndust transport from the Bodele Depression calls for future investigations and clarification.rnrnAforementioned characteristics of the transatlantic dust transport just slightly change in simulationsrnrepresenting climatic conditions of the Little Ice Age in the middle of the last millennium with meanrnnear-surface cooling of 0.5 to 1 K. However, intensification of the West African summer monsoon duringrnthe Little Ice Age is associated with higher dust emissions from North African source regions and wetterrnconditions in the Sahel. Furthermore, the Indian Monsoon and dust emissions from the Arabian Peninsula,rnwhich are affected by this circulation, are intensified during the Little Ice Age, whereas the annual globalrndust budget is similar in both climate epochs. Simulated dust emission fluxes are particularly influencedrnby the surface parameters. Modifications of the model do not affect those in this thesis, to be able tornascribe all differences in the results to changed forcing factors, such as greenhouse gas concentrations.rnDue to meagre comparison data sets, the verification of results presented here is problematic. Deeperrnknowledge about the dust cycle during the Little Ice Age can be obtained by future simulations, based onrnthis work, and additionally using improved reconstructions of surface parameters. Better evaluation ofrnsuch simulations would be possible by refining the temporal resolution of reconstructed dust depositionrnfluxes from existing ice and marine sediment cores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The time course of lake recovery after a reduction in external loading of nutrients is often controlled by conditions in the sediment. Remediation of eutrophication is hindered by the presence of legacy organic carbon deposits, that exert a demand on the terminal electron acceptors of the lake and contribute to problems such as internal nutrient recycling, absence of sediment macrofauna, and flux of toxic metal species into the water column. Being able to quantify the timing of a lake’s response requires determination of the magnitude and lability, i.e., the susceptibility to biodegradation, of the organic carbon within the legacy deposit. This characterization is problematic for organic carbon in sediments because of the presence of different fractions of carbon, which vary from highly labile to refractory. The lability of carbon under varied conditions was tested with a bioassay approach. It was found that the majority of the organic material found in the sediments is conditionally-labile, where mineralization potential is dependent on prevailing conditions. High labilities were noted under oxygenated conditions and a favorable temperature of 30 °C. Lability decreased when oxygen was removed, and was further reduced when the temperature was dropped to the hypolimnetic average of 8° C . These results indicate that reversible preservation mechanisms exist in the sediment, and are able to protect otherwise labile material from being mineralized under in situ conditions. The concept of an active sediment layer, a region in the sediments in which diagenetic reactions occur (with nothing occurring below it), was examined through three lines of evidence. Initially, porewater profiles of oxygen, nitrate, sulfate/total sulfide, ETSA (Electron Transport System Activity- the activity of oxygen, nitrate, iron/manganese, and sulfate), and methane were considered. It was found through examination of the porewater profiles that the edge of diagenesis occurred around 15-20 cm. Secondly, historical and contemporary TOC profiles were compared to find the point at which the profiles were coincident, indicating the depth at which no change has occurred over the (13 year) interval between core collections. This analysis suggested that no diagenesis has occurred in Onondaga Lake sediment below a depth of 15 cm. Finally, the time to 99% mineralization, the t99, was viewed by using a literature estimate of the kinetic rate constant for diagenesis. A t99 of 34 years, or approximately 30 cm of sediment depth, resulted for the slowly decaying carbon fraction. Based on these three lines of evidence , an active sediment layer of 15-20 cm is proposed for Onondaga Lake, corresponding to a time since deposition of 15-20 years. While a large legacy deposit of conditionally-labile organic material remains in the sediments of Onondaga Lake, it becomes clear that preservation, mechanisms that act to shield labile organic carbon from being degraded, protects this material from being mineralized and exerting a demand on the terminal electron acceptors of the lake. This has major implications for management of the lake, as it defines the time course of lake recovery following a reduction in nutrient loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eutrophication is a persistent problem in many fresh water lakes. Delay in lake recovery following reductions in external loading of phosphorus, the limiting nutrient in fresh water ecosystems, is often observed. Models have been created to assist with lake remediation efforts, however, the application of management tools to sediment diagenesis is often neglected due to conceptual and mathematical complexity. SED2K (Chapra et al. 2012) is proposed as a "middle way", offering engineering rigor while being accessible to users. An objective of this research is to further support the development and application SED2K for sediment phosphorus diagenesis and release to the water column of Onondaga Lake. Application of SED2K has been made to eutrophic Lake Alice in Minnesota. The more homogenous sediment characteristics of Lake Alice, compared with the industrially polluted sediment layers of Onondaga Lake, allowed for an invariant rate coefficient to be applied to describe first order decay kinetics of phosphorus. When a similar approach was attempted on Onondaga Lake an invariant rate coefficient failed to simulate the sediment phosphorus profile. Therefore, labile P was accounted for by progressive preservation after burial and a rate coefficient which gradual decreased with depth was applied. In this study, profile sediment samples were chemically extracted into five operationally-defined fractions: CaCO3-P, Fe/Al-P, Biogenic-P, Ca Mineral-P and Residual-P. Chemical fractionation data, from this study, showed that preservation is not the only mechanism by which phosphorus may be maintained in a non-reactive state in the profile. Sorption has been shown to contribute substantially to P burial within the profile. A new kinetic approach involving partitioning of P into process based fractions is applied here. Results from this approach indicate that labile P (Ca Mineral and Organic P) is contributing to internal P loading to Onondaga Lake, through diagenesis and diffusion to the water column, while the sorbed P fraction (Fe/Al-P and CaCO3-P) is remaining consistent. Sediment profile concentrations of labile and total phosphorus at time of deposition were also modeled and compared with current labile and total phosphorus, to quantify the extent to which remaining phosphorus which will continue to contribute to internal P loading and influence the trophic status of Onondaga Lake. Results presented here also allowed for estimation of the depth of the active sediment layer and the attendant response time as well as the sediment burden of labile P and associated efflux.