961 resultados para seasonal effects
Resumo:
We studied the altitudinal ranging of one habituated group of black-crested gibbons (Nomascus concolor) at Dazhaizi, Mt. Wuliang, Yunnan, China, between March 2005 and April 2006. The group ranged from 1,900 to 2,680 m above sea level. Food distribution was the driving force behind the altitudinal ranging patterns of the study group. They spent 83.2% of their time ranging between 2,100 and 2,400 m, where 75.8% of important food patches occurred. They avoided using the area above 2,500 m despite a lack of human disturbance there, apparently because there were few food resources. Temperature had a limited effect on seasonal altitudinal ranging but probably explained the diel altitudinal ranging of the group, which tended to use the lower zone in the cold morning and the higher zone in the warm afternoon. Grazing goats, the main disturbance, were limited to below 2,100 m, which was defined as the high-disturbance area (HDA). Gibbons spent less time in the HDA and, when ranging there, spent more time feeding and travelling and less time resting and singing. Human activities directly influenced gibbon behaviour, might cause forest degradation and create dispersal barriers between populations. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) were used as a new pen-cultureed biomanipulation technique to control algal blooms in Meiliang Bay of Lake Taihu. In order to evaluate the capacity of these two fishes to decrease algal blooms, diel feeding samplings were carried out in May (without algal blooms) and September (with algal blooms) in 2005. Based on estimated food consumption by the Elliott-Persson model, silver carp increased daily food consumption from 2.07 g dry weight per 100 g wet body weight in May before the outbreak of algal blooms to 4.98 g dry weight per 100 g wet body weight in September during algal blooms outbreak. However, no obvious variation of food consumption was observed in bighead carp during the study period. This species 1.88 and 1.54 g dry weight of plankton per 100 g wet body weight in May and September, respectively. Silver carp had a higher feeding capacity for plankton than bighead carp. Biotic factors (i.e., fish size and conspecific competition with natural species in the lake) may affect the feeding behaviors of both carps as well as seasonal variation of plankton communities in the pen.
Resumo:
Nitrogen addition to soil can play a vital role in influencing the losses of soil carbon by respiration in N-deficient terrestrial ecosystems. The aim of this study was to clarify the effects of different levels of nitrogen fertilization (HN, 200 kg N ha(-1) year(-1); MN, 100 kg N ha(-1) year(-1); LN, 50 kg N ha(-1) year(-1)) on soil respiration compared with non-fertilization (CK, 0 kg N ha(-1) year(-1)), from July 2007 to September 2008, in temperate grassland in Inner Mongolia, China. Results showed that N fertilization did not change the seasonal patterns of soil respiration, which were mainly controlled by soil heat-water conditions. However, N fertilization could change the relationships between soil respiration and soil temperature, and water regimes. Soil respiration dependence on soil moisture was increased by N fertilization, and the soil temperature sensitivity was similar in the treatments of HN, LN, and CK treatments (Q (10) varied within 1.70-1.74) but was slightly reduced in MN treatment (Q (10) = 1.63). N fertilization increased soil CO2 emission in the order MN > HN > LN compared with the CK treatment. The positive effects reached a significant level for HN and MN (P < 0.05) and reached a marginally significant level for LN (P = 0.059 < 0.1) based on the cumulative soil respiration during the 2007 growing season after fertilization (July-September 2007). Furthermore, the differences between the three fertilization treatments and CK reached the very significant level of 0.01 on the basis of the data during the first entire year after fertilization (July 2007-June 2008). The annual total soil respiration was 53, 57, and 24% higher than in the CK plots (465 g m(-2) year(-1)). However, the positive effects did not reach the significant level for any treatment in the 2008 growing season after the second year fertilization (July-September 2008, P > 0.05). The pairwise differences between the three N-level treatments were not significant in either year (P > 0.05).
Resumo:
Coral bleaching, which is defined as the loss of colour in corals due to the loss of their symbiotic algae (commonly called zooxanthellae) or pigments or both, is occurring globally at increasing rates, and its harm becomes more and more serious during these two decades. The significance of these bleaching events to the health of coral reef ecosystems is extreme, as bleached corals exhibited high mortality, reduced fecundity and productivity and increased susceptibility to diseases. This decreased coral fitness is easily to lead to reef degradation and ultimately to the breakdown of the coral reef ecosystems. Recently, the reasons leading to coral bleaching are thought to be as follows: too high or too low temperature, excess ultraviolet exposure, heavy metal pollution, cyanide poison and seasonal cycle. To date there has been little knowledge of whether mariculture can result in coral bleaching and which substance has the worst effect on corals. And no research was conducted on the effect of hypoxia on corals. To address these questions, effects of temperature, hypoxia, ammonia and nitrate on bleaching of three coral species were studied through examination of morphology and the measurement of the number of symbiotic algae of three coral species Acropora nobilis, Palythoa sp. and Alveopora verrilliana. Results showed that increase in temperature and decrease in dissolved oxygen could lead to increasing number of symbiotic algae and more serious bleaching. In addition, the concentration of 0.001 mmol/L ammonia or nitrate could increase significantly the expulsion of the symbiotic algae of the three coral species. Except for Acropora nobilis, the numbers of symbiotic algae of other two corals did not significantly increase with the increasing concentration of ammonia and nitrate. Furthermore, different hosts have different stress susceptibilities on coral bleaching.
Resumo:
Based on the research of juvenile (2, 3, 4 months) growth and survival of three populations of two different geographic areas in Chlamys farreri from Russian and China and their F, hybrids derived from Chinese cultural population (CC) female x Russian population (RW) male, Chinese wild population (CW) female x Russian population (RW) male, Russian population (RW) female x Chinese wild population (CW) the study of the medium-term (6, 8, 10, 12 months) growth and development of Chlamys farreri was carried out. The four determined results indicated that there existed different extent heterosis (3% similar to 52 %) for the growth in three types of F-1 hybrids, and the offspring derived from CC female X Rmale had a stronger heterosis among the crosses at the medium-term; the uptrend among traits are wet weight > shell width > shell length > shell height, Chinese cultural population could be recognized as excellent parent, and seasonal variations influence very much on the daily increment and growth rate of each trait of Chlamys farreri and it is only able to survive and could barely grow in winter (6 similar to 8 months), but grows fast in temperate season (10similar to12 months).
Resumo:
An ocean general circulation model (OGCM) is used to study the roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean. The western boundary reflection is defined as the total Kelvin waves leaving the western boundary, which include the reflection of the equatorial Rossby waves as well as the effects of alongshore winds, off-equatorial Rossby waves, and nonlinear processes near the western boundary. The evaluation of the reflection is based on a wave decomposition of the OGCM results and experiments with linear models. It is found that the alongshore winds along the east coast of Africa and the Rossby waves in the off-equatorial areas contribute significantly to the annual harmonics of the equatorial Kelvin waves at the western boundary. The semiannual harmonics of the Kelvin waves, on the other hand, originate primarily from a linear reflection of the equatorial Rossby waves. The dynamics of a dominant annual oscillation of sea level coexisting with the dominant semiannual oscillations of surface zonal currents in the central equatorial Indian Ocean are investigated. These sea level and zonal current patterns are found to be closely related to the linear reflections of the semiannual harmonics at the meridional boundaries. Because of the reflections, the second baroclinic mode resonates with the semiannual wind forcing; that is, the semiannual zonal currents carried by the reflected waves enhance the wind-forced currents at the central basin. Because of the different behavior of the zonal current and sea level during the reflections, the semiannual sea levels of the directly forced and reflected waves cancel each other significantly at the central basin. In the meantime, the annual harmonic of the sea level remains large, producing a dominant annual oscillation of sea level in the central equatorial Indian Ocean. The linear reflection causes the semiannual harmonics of the incoming and reflected sea levels to enhance each other at the meridional boundaries. In addition, the weak annual harmonics of sea level in the western basin, resulting from a combined effect of the western boundary reflection and the equatorial zonal wind forcing, facilitate the dominance by the semiannual harmonics near the western boundary despite the strong local wind forcing at the annual period. The Rossby waves are found to have a much larger contribution to the observed equatorial semiannual oscillations of surface zonal currents than the Kelvin waves. The westward progressive reversal of seasonal surface zonal currents along the equator in the observations is primarily due to the Rossby wave propagation.
Resumo:
Phytoplankton size structure plays a significant role in controlling the carbon flux of marine pelagic ecosystems. The mesoscale distribution and seasonal variation of total and size-fractionated phytoplankton biomass in surface waters. as measured by chlorophyll a (Chl a), was studied in the Southern Yellow Sea using data from four cruises during 2006-2007. The distribution of Chl a showed a high degree of spatial and temporal variation in the study area. Chl a concentrations were relatively high in the summer and autumn, with a mean of 142 and 1.27 mg m(-3), respectively. Conversely, in the winter and spring. the average Chl a levels were only 098 and 0.99 mg m(-3) Total Chl a showed a clear decreasing gradient from coastal areas to the open sea in the summer, autumn and winter cruises. Patches of high Chl a were observed in the central part of the Southern Yellow Sea in the spring due to the onset of the phytoplankton bloom. The eutrophic coastal waters contributed at least 68% of the total phytoplankton biomass in the surface layer. Picophytoplankton showed a consistent and absolute dominance in the central region of the Southern Yellow Sea (>40%) in all of the cruises, while the proportion of microphytoplankton was the highest in coastal waters The relative proportions of pico- and nanophytoplankton decreased with total biomass, whereas the proportion of the micro-fraction increased with total biomass. Relationships between phytoplankton biomass and environmental factors were also analysed. The results showed that the onset of the spring bloom was highly dependent on water column stability. Phytoplankton growth was limited by nutrient availability in the summer due to the strong thermocline. The combined effects of P-limitation and vertical mixing in the autumn restrained the further increase of phytoplankton biomass in the Surface layer. The low phytoplankton biomass in winter was caused by vertical dispersion due to intense mixing. Compared with the availability of nutrients. temperature did not seem to cause direct effects on phytoplankton biomass and its size structure. Although interactions of many different environmental factors affected phytoplankton distributions. hydrodynamic conditions seemed to be the dominant factor. Phytoplankton size structure was determined mainly by the size-differential capacity in acquiring resource. Short time scale events, such as the spring bloom and the extension of Yangtze River plume, can have substantial influences, both on the total Chl a concentration and on the size structure of the phytoplankton. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Pond farming for sea cucumber has developed rapidly along the northern coast of China in the recent years. Holothurians inhabiting ponds undergo seasonal fluctuations of salinity. This study deals with the bioenergetic responses of pond-cultured sea cucumbers Apostichopus japonicus (wet weight of 37.5 +/- 1.8 g) to different water salinities [22, 27, 31.5, and 36 practical salinity units (psu)] at 15 degrees C in the laboratory to determine the influence of water salinity on growth and energy allocation in this species. Results show that ingested energy and scope for growth (SFG) were highest at 31.5 psu and then decreased when water salinity was below or above this point. Although energy ingested was lowest at 36 psu, the lowest SFG occurred at 22 psu (only 102.68 +/- 14.26 J g(-1) d(-1)) because animals reared at 22 psu spent much more consumed energy on feces (72.19%), respiration (21.70%), and excretion (2.59%), leaving less energy for growth (3.52%). Results suggest that pond-cultured sea cucumbers could tolerate chronic salinity fluctuations at a range of 22 to 36 psu and grew better between 27 and 31.5 psu, but decreased at salinities above and below the mentioned salinity range. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.
Resumo:
The ciliate community structure and seasonal dynamics in a solar saltern of the Yellow Sea were studied based oil 4 sampling dates and 8 stations with salinities from 27.7 parts per thousand to 311.0 parts per thousand. The effects of the type and concentration of the fixative used (Lugol's and Bouin's) were tested at the first sampling date. Fixative type and fixative concentration had significant effects on ciliate abundance and blovolume, with 1% Lugol's giving the best results. A detailed investigation using live observations and protargol staining techniques revealed a total of 98 morphospecies from 8 sampling stations. There was obvious seasonal variation in species composition at most of the stations, but this tended to be less distinct with increasing salinity, as the dominant ciliate group shifted from oligotrichs to heterotrichs. Ciliate abundance varied from 4.40 x 10(1) to 2.11 x 10(5) cells l(-1) and biomass ranged between 2.39 and 9.87 x 10(3) mu g Cl-1 (at a salinity of 147.6 parts per thousand). Both abundance and biomass decreased abruptly when salinity exceeded 100-150 parts per thousand. Statistical analyses Suggested that the dynamics of ciliate abundance and biomass were regulated by both salinity and by season, but those of diversity and species richness were mainly controlled by salinity and both significantly decreased with increasing salinity. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
Through 2-3-year (2003-2005) continuous eddy covariance measurements of carbon dioxide and water vapor fluxes, we examined the seasonal, inter-annual, and inter-ecosystem variations in the ecosystem-level water use efficiency (WUE, defined as the ratio of gross primary production, GPP, to evapotranspiration, ET) at four Chinese grassland ecosystems in the Qinghai-Tibet Plateau and North China. Representing the most prevalent grassland types in China, the four ecosystems are an alpine swamp meadow ecosystem, an alpine shrub-meadow ecosystem, an alpine meadow-steppe ecosystem, and a temperate steppe ecosystem, which illustrate a water availability gradient and thus provide us an opportunity to quantify environmental and biological controls on ecosystem WUE at different spatiotemporal scales. Seasonally, WUE tracked closely with GPP at the four ecosystems, being low at the beginning and the end of the growing seasons and high during the active periods of plant growth. Such consistent correspondence between WUE and GPP suggested that photosynthetic processes were the dominant regulator of the seasonal variations in WUE. Further investigation indicated that the regulations were mainly due to the effect of leaf area index (LAI) on carbon assimilation and on the ratio of transpiration to ET (T/ET). Besides, except for the swamp meadow, LAI also controlled the year-to-year and site-to-site variations in WUE in the same way, resulting in the years or sites with high productivity being accompanied by high WUE. The general good correlation between LAI and ecosystem WUE indicates that it may be possible to predict grassland ecosystem WUE simply with LAI. Our results also imply that climate change-induced shifts in vegetation structure, and consequently LAI may have a significant impact on the relationship between ecosystem carbon and water cycles in grasslands.
Resumo:
Understanding the effects of dietary composition on methane (CH4) production of sheep can help us to understand grassland degradation resulting in an increase of CH4 emission from ruminant livestock and its resulting significance affecting CH4 source/sink in the grazing ecosystem. The objective of this study was to investigate the effect of forage composition in the diet of sheep in July and August on CH4 production by sheep in the Inner Mongolia steppe. The four diet treatments were: (1) Leymus chinensis and Cleistogenes squarrosa (LC), (2) Leymus chinensis, Cleistogenes squarrosa and concentrate supplementation (LCC), (3) Artemisia frigida and Cleistogenes squarrosa (AC), and (4) Artemisia frigida, Cleistogenes squarrosa and concentrate supplementation (ACC). CH4 production was significantly lower in July than in August (31.4 and 36.2 g per sheep-unit per day, respectively). The daily average CH4 production per unit of digestive dry matter (DM), organic matter (OM) and neutral detergent fiber (NDF) increased by 10.9, 11.2 and 42.1% for the AC diet compared with the LC diet, respectively. Although concentrate supplementation in both the AC and LC diets increased total CH4 production per sheep per day, it improved sheep productivity and decreased CH4 production by 14.8, 12.5 and 14.8% per unit of DM, OM and NDF digested by the sheep, respectively. Our results suggested that in degraded grassland CH4 emission from sheep was increased and concentrate supplementation increased diet use efficiency. Sheep-grazing ecosystem seems to be a source of CH4 when the stocking rate is over 0.5 sheep-units ha(-1) during the growing season in the Inner Mongolia steppe.
Resumo:
Effects of plateau zokors (Myospalax fontanierii) on seasonal above- and belowground plant biomass, plant species diversity, and soil moisture and organic matter were examined at an alpine meadow site in Qinghai Province, People's Republic of China. Above- and belowground biomass increased significantly in areas where zokors were removed or burrow systems were abandoned for 5 years compared with areas that zokors had occupied for >10 years. Biomass of monocotyledons was reduced greatly, but biomass of nonpalatable dicotyledons increased significantly, in occupied areas. Diversity of dicotyledons, monocotyledons, and total plants in unoccupied areas was significantly greater than in occupied or abandoned areas. Vegetation cover and height in occupied areas were significantly less than in unoccupied and abandoned areas. No consistent effect by zokors on soil moisture and organic matter was observed.
Resumo:
A consideration of some physiological (rates of oxygen consumption, the scope for growth) and cellular (the cytochemical latency of a lysosomal enzyme) processes in bivalve molluscs suggests that animal size and seasonal changes related to the gametogenic cycle are important sources of natural variability. Correcting for size using regression techniques, and limiting measurements to one part of the gametogenic cycle, reduces observed natural variability considerably. Differences between populations are then still apparent, but the results of laboratory experiments with hydrocarbons from crude oil suggest that it should be possible to detect sub-lethal effects due to pollution (the ‘signal’) in the presence of the remaining natural variability (the ‘noise’). Statistical considerations, taken together with results from current studies on Mytilus edulis and Scobicularia plana, indicate that sample sizes of 10–15 individuals should suffice for the detection of possible pollution effects. The physiological effects to be expected in the presence of sub-lethal levels of polluting hydrocarbons are on a scaie that can cause significant ecological damage to a population through a reduction in fecundity and the residual reproductive value of the individuals.
Resumo:
Multivariate experiments are used to study the effects of body size, food concentration, and season on the oxygen consumption, ammonia excretion, food assimilation efficiency and filtration rate of Mytilus edulis adults. Food concentrations and season affect both the intercept and the slope of the allometric equation describing oxygen uptake as a function of body size. Multiple regression and response surface techniques are used to describe and illustrate the complex relationship between metabolic rate, ration, season and the body size of M. edulis. Filtration rate has a relatively low weight exponent Q> = 038) and the intercept for the allometric equation is not significantly affected by food concentration, season or acclimation temperatures between 5 and 20 °C. Food assimilation efficiency declines exponentially with increasing food concentration and is dependent on body size at high food levels. The rate of ammonia excretion shows a similar seasonal cycle to that of oxygen consumption. They are both minimal in the autumn/winter and reach a maximum in the spring /summer.
Resumo:
The development of population models able to reproduce the dynamics of zooplankton is a central issue when trying to understand how a changing environment would affect zooplankton in the future. Using 10 years of monthly data on phytoplankton and zooplankton abundance in the Bay of Biscay from the IEO's RADIALES time-series programme, we built non-parametric Generalized Additive Models (GAMs) able to reproduce the dynamics of plankton on the basis of environmental factors (nutrients, temperature, upwelling and photoperiod). We found that the interaction between these two plankton components is approximately linear, whereas the effects of environmental factors are non-linear. With the inclusion of the environmental variability, the main seasonal and inter-annual dynamic patterns observed within the studied plankton assemblage indicate the prevalence of bottom-up regulatory control. The statistically deduced models were used to simulate the dynamics of the phytoplankton and zooplankton. A good agreement between observations and simulations was obtained, especially for zooplankton. We are presently developing spatio-temporal GAM models for the North Sea based on the Continuous Plankton Recorder database.