931 resultados para scale invariant phase
Resumo:
Este trabalho aborda o problema de casamento entre duas imagens. Casamento de imagens pode ser do tipo casamento de modelos (template matching) ou casamento de pontos-chaves (keypoint matching). Estes algoritmos localizam uma região da primeira imagem numa segunda imagem. Nosso grupo desenvolveu dois algoritmos de casamento de modelos invariante por rotação, escala e translação denominados Ciratefi (Circula, radial and template matchings filter) e Forapro (Fourier coefficients of radial and circular projection). As características positivas destes algoritmos são a invariância a mudanças de brilho/contraste e robustez a padrões repetitivos. Na primeira parte desta tese, tornamos Ciratefi invariante a transformações afins, obtendo Aciratefi (Affine-ciratefi). Construímos um banco de imagens para comparar este algoritmo com Asift (Affine-scale invariant feature transform) e Aforapro (Affine-forapro). Asift é considerado atualmente o melhor algoritmo de casamento de imagens invariante afim, e Aforapro foi proposto em nossa dissertação de mestrado. Nossos resultados sugerem que Aciratefi supera Asift na presença combinada de padrões repetitivos, mudanças de brilho/contraste e mudanças de pontos de vista. Na segunda parte desta tese, construímos um algoritmo para filtrar casamentos de pontos-chaves, baseado num conceito que denominamos de coerência geométrica. Aplicamos esta filtragem no bem-conhecido algoritmo Sift (scale invariant feature transform), base do Asift. Avaliamos a nossa proposta no banco de imagens de Mikolajczyk. As taxas de erro obtidas são significativamente menores que as do Sift original.
Resumo:
Falls are one of the greatest threats to elderly health in their daily living routines and activities. Therefore, it is very important to detect falls of an elderly in a timely and accurate manner, so that immediate response and proper care can be provided, by sending fall alarms to caregivers. Radar is an effective non-intrusive sensing modality which is well suited for this purpose, which can detect human motions in all types of environments, penetrate walls and fabrics, preserve privacy, and is insensitive to lighting conditions. Micro-Doppler features are utilized in radar signal corresponding to human body motions and gait to detect falls using a narrowband pulse-Doppler radar. Human motions cause time-varying Doppler signatures, which are analyzed using time-frequency representations and matching pursuit decomposition (MPD) for feature extraction and fall detection. The extracted features include MPD features and the principal components of the time-frequency signal representations. To analyze the sequential characteristics of typical falls, the extracted features are used for training and testing hidden Markov models (HMM) in different falling scenarios. Experimental results demonstrate that the proposed algorithm and method achieve fast and accurate fall detections. The risk of falls increases sharply when the elderly or patients try to exit beds. Thus, if a bed exit can be detected at an early stage of this motion, the related injuries can be prevented with a high probability. To detect bed exit for fall prevention, the trajectory of head movements is used for recognize such human motion. A head detector is trained using the histogram of oriented gradient (HOG) features of the head and shoulder areas from recorded bed exit images. A data association algorithm is applied on the head detection results to eliminate head detection false alarms. Then the three dimensional (3D) head trajectories are constructed by matching scale-invariant feature transform (SIFT) keypoints in the detected head areas from both the left and right stereo images. The extracted 3D head trajectories are used for training and testing an HMM based classifier for recognizing bed exit activities. The results of the classifier are presented and discussed in the thesis, which demonstrates the effectiveness of the proposed stereo vision based bed exit detection approach.
Resumo:
Marr's work offered guidelines on how to investigate vision (the theory - algorithm - implementation distinction), as well as specific proposals on how vision is done. Many of the latter have inevitably been superseded, but the approach was inspirational and remains so. Marr saw the computational study of vision as tightly linked to psychophysics and neurophysiology, but the last twenty years have seen some weakening of that integration. Because feature detection is a key stage in early human vision, we have returned to basic questions about representation of edges at coarse and fine scales. We describe an explicit model in the spirit of the primal sketch, but tightly constrained by psychophysical data. Results from two tasks (location-marking and blur-matching) point strongly to the central role played by second-derivative operators, as proposed by Marr and Hildreth. Edge location and blur are evaluated by finding the location and scale of the Gaussian-derivative `template' that best matches the second-derivative profile (`signature') of the edge. The system is scale-invariant, and accurately predicts blur-matching data for a wide variety of 1-D and 2-D images. By finding the best-fitting scale, it implements a form of local scale selection and circumvents the knotty problem of integrating filter outputs across scales. [Supported by BBSRC and the Wellcome Trust]
Resumo:
Over the full visual field, contrast sensitivity is fairly well described by a linear decline in log sensitivity as a function of eccentricity (expressed in grating cycles). However, many psychophysical studies of spatial visual function concentrate on the central ±4.5 deg (or so) of the visual field. As the details of the variation in sensitivity have not been well documented in this region we did so for small patches of target contrast at several spatial frequencies (0.7–4 c/deg), meridians (horizontal, vertical, and oblique), orientations (horizontal, vertical, and oblique), and eccentricities (0–18 cycles). To reduce the potential effects of stimulus uncertainty, circular markers surrounded the targets. Our analysis shows that the decline in binocular log sensitivity within the central visual field is bilinear: The initial decline is steep, whereas the later decline is shallow and much closer to the classical results. The bilinear decline was approximately symmetrical in the horizontal meridian and declined most steeply in the superior visual field. Further analyses showed our results to be scale-invariant and that this property could not be predicted from cone densities. We used the results from the cardinal meridians to radially interpolate an attenuation surface with the shape of a witch's hat that provided good predictions for the results from the oblique meridians. The witch's hat provides a convenient starting point from which to build models of contrast sensitivity, including those designed to investigate signal summation and neuronal convergence of the image contrast signal. Finally, we provide Matlab code for constructing the witch's hat.
Resumo:
Ernst Mach observed that light or dark bands could be seen at abrupt changes of luminance gradient in the absence of peaks or troughs in luminance. Many models of feature detection share the idea that bars, lines, and Mach bands are found at peaks and troughs in the output of even-symmetric spatial filters. Our experiments assessed the appearance of Mach bands (position and width) and the probability of seeing them on a novel set of generalized Gaussian edges. Mach band probability was mainly determined by the shape of the luminance profile and increased with the sharpness of its corners, controlled by a single parameter (n). Doubling or halving the size of the images had no significant effect. Variations in contrast (20%-80%) and duration (50-300 ms) had relatively minor effects. These results rule out the idea that Mach bands depend simply on the amplitude of the second derivative, but a multiscale model, based on Gaussian-smoothed first- and second-derivative filtering, can account accurately for the probability and perceived spatial layout of the bands. A key idea is that Mach band visibility depends on the ratio of second- to first-derivative responses at peaks in the second-derivative scale-space map. This ratio is approximately scale-invariant and increases with the sharpness of the corners of the luminance ramp, as observed. The edges of Mach bands pose a surprisingly difficult challenge for models of edge detection, but a nonlinear third-derivative operation is shown to predict the locations of Mach band edges strikingly well. Mach bands thus shed new light on the role of multiscale filtering systems in feature coding. © 2012 ARVO.
Resumo:
The processing conducted by the visual system requires the combination of signals that are detected at different locations in the visual field. The processes by which these signals are combined are explored here using psychophysical experiments and computer modelling. Most of the work presented in this thesis is concerned with the summation of contrast over space at detection threshold. Previous investigations of this sort have been confounded by the inhomogeneity in contrast sensitivity across the visual field. Experiments performed in this thesis find that the decline in log contrast sensitivity with eccentricity is bilinear, with an initial steep fall-off followed by a shallower decline. This decline is scale-invariant for spatial frequencies of 0.7 to 4 c/deg. A detailed map of the inhomogeneity is developed, and applied to area summation experiments both by incorporating it into models of the visual system and by using it to compensate stimuli in order to factor out the effects of the inhomogeneity. The results of these area summation experiments show that the summation of contrast over area is spatially extensive (occurring over 33 stimulus carrier cycles), and that summation behaviour is the same in the fovea, parafovea, and periphery. Summation occurs according to a fourth-root summation rule, consistent with a “noisy energy” model. This work is extended to investigate the visual deficit in amblyopia, finding that area summation is normal in amblyopic observers. Finally, the methods used to study the summation of threshold contrast over area are adapted to investigate the integration of coherent orientation signals in a texture. The results of this study are described by a two-stage model, with a mandatory local combination stage followed by flexible global pooling of these local outputs. In each study, the results suggest a more extensive combination of signals in vision than has been previously understood.
Resumo:
2000 Mathematics Subject Classification: 26A33 (main), 44A40, 44A35, 33E30, 45J05, 45D05
Resumo:
It is shown that a bosonic formulation of the double-exchange model, one of the classical models for magnetism, generates dynamically a gauge-invariant phase in a finite region of the phase diagram. We use analytical methods, Monte Carlo simulations and finite-size scaling analysis. We study the transition line between that region and the paramagnetic phase. The numerical results show that this transition line belongs to the universality class of the antiferromagnetic RP^(2) model. The fact that one can define a universality class for the antiferromagnetic RP^(2) model, different from the one of the O(N) models, is puzzling and somehow contradicts naive expectations about universality.
Resumo:
AIRES, Kelson R. T. ; ARAÚJO, Hélder J. ; MEDEIROS, Adelardo A. D. . Plane Detection from Monocular Image Sequences. In: VISUALIZATION, IMAGING AND IMAGE PROCESSING, 2008, Palma de Mallorca, Spain. Proceedings..., Palma de Mallorca: VIIP, 2008
Resumo:
AIRES, Kelson R. T.; ARAÚJO, Hélder J.; MEDEIROS, Adelardo A. D. Plane Detection Using Affine Homography. In: CONGRESSO BRASILEIRO DE AUTOMÁTICA, 2008, Juiz de Fora, MG: Anais... do CBA 2008.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
This work presents a tool to support authentication studies of paintings attributed to the modernist Portuguese artist Amadeo de Souza-Cardoso (1887-1918). The strategy adopted was to quantify and combine the information extracted from the analysis of the brushstroke with information on the pigments present in the paintings. The brushstroke analysis was performed combining Gabor filter and Scale Invariant Feature Transform. Hyperspectral imaging and elemental analysis were used to compare the materials in the painting with those present in a database of oil paint tubes used by the artist. The outputs of the tool are a quantitative indicator for authenticity, and a mapping image that indicates the areas where materials not coherent with Amadeo's palette were detected, if any. This output is a simple and effective way of assessing the results of the system. The method was tested in twelve paintings obtaining promising results.
Resumo:
AIRES, Kelson R. T. ; ARAÚJO, Hélder J. ; MEDEIROS, Adelardo A. D. . Plane Detection from Monocular Image Sequences. In: VISUALIZATION, IMAGING AND IMAGE PROCESSING, 2008, Palma de Mallorca, Spain. Proceedings..., Palma de Mallorca: VIIP, 2008
Resumo:
AIRES, Kelson R. T.; ARAÚJO, Hélder J.; MEDEIROS, Adelardo A. D. Plane Detection Using Affine Homography. In: CONGRESSO BRASILEIRO DE AUTOMÁTICA, 2008, Juiz de Fora, MG: Anais... do CBA 2008.
Resumo:
Normal grain growth of calcite was investigated by combining grain size analysis of calcite across the contact aureole of the Adamello pluton, and grain growth modeling based on a thermal model of the surroundings of the pluton. In an unbiased model system, i.e., location dependent variations in temperature-time path, 2/3 and 1/3 of grain growth occurs during pro- and retrograde metamorphism at all locations, respectively. In contrast to this idealized situation, in the field example three groups can be distinguished, which are characterized by variations in their grain size versus temperature relationships: Group I occurs at low temperatures and the grain size remains constant because nano-scale second phase particles of organic origin inhibit grain growth in the calcite aggregates under these conditions. In the presence of an aqueous fluid, these second phases decay at a temperature of about 350 °C enabling the onset of grain growth in calcite. In the following growth period, fluid-enhanced group II and slower group III growth occurs. For group II a continuous and intense grain size increase with T is typical while the grain growth decreases with T for group III. None of the observed trends correlate with experimentally based grain growth kinetics, probably due to differences between nature and experiment which have not yet been investigated (e.g., porosity, second phases). Therefore, grain growth modeling was used to iteratively improve the correlation between measured and modeled grain sizes by optimizing activation energy (Q), pre-exponential factor (k0) and grain size exponent (n). For n=2, Q of 350 kJ/mol, k0 of 1.7×1021 μmns−1 and Q of 35 kJ/mol, k0 of 2.5×10-5 μmns−1 were obtained for group II and III, respectively. With respect to future work, field-data based grain growth modeling might be a promising tool for investigating the influences of secondary effects like porosity and second phases on grain growth in nature, and to unravel differences between nature and experiment.