857 resultados para salt titration
Resumo:
The instrument described in this report is an updated version of the high precision, automated Winkler titration system described by Friederich et al.(1984). The original instrument was based on the work of Bryan et al. (1976) who developed a colorimetric endpoint detector and on the work of Williams and Jenkinson (1982) who produced an automated system that used this detector. The goals of our updated version of the device described by Friederich et al. (1984) were as follows: 1) Move control of the system to the MS-DOS environment because HP-85 computers are no longer in production and because more user-friendly programs could be written using the IBM XT or AT computers that control the new device. 2) Use more "off the shelf" components and reduce the parts count in the new system so that it could be easily constructed and maintained. This report describes how to construct and use the new automated Winkler titration device. It also includes information on the chemistry of the Winkler titration, and detailed instructions on how to prepare reagents, collect samples, standardize and perform the titrations (Appendix I: Codispoti, L.A. 1991 On the determination of dissolved oxygen in sea water, 15pp.). A disk containing the program needed to operate the new device is also included. (pdf contains 33 pages)
Resumo:
The purpose of this work was the study of phytoplankton production of the salt lakes of the Steppe region of Crimea, during the vegetative period of 1974. From May to October Sakskoe and Sasyk Lakes were examined, and from August to October - Moinakskoe Lake. The density of the salt water was measured and the intensity of photosynthesis was determined. From the data presented, it is apparent that the intensity of photosynthesis in Sakskoe and Sasyk Lakes, on average, is extremely high.
Resumo:
We compared the density and biomass of resident fish in vegetated and unvegetated flooded habitats of impounded salt marshes in the northern Indian River Lagoon (IRL) Estuary of east-central Florida. A 1-m2 throw trap was used to sample fish in randomly located, paired sample plots (n = 198 pairs) over 5 seasons in 7 impoundments. We collected a total of 15 fish taxa, and 88% of the fishes we identified from the samples belonged to three species: Cyprinodon variegatus (Sheepshead Minnow), Gambusia holbrooki (Eastern Mosquitofish), and Poecilia latipinna (Sailfin Molly). Vegetated habitat usually had higher density and biomass of fish. Mean fish density (and 95% confidence interval) for vegetated and unvegetated sites were 8.2 (6.7–9.9) and 2.0 (1.6–2.4) individuals m-2, respectively; mean biomass (and 95% confidence interval) for vegetated and unvegetated sites were 3.0 (2.5–3.7) and 1.1 (0.9–1.4) g m-2, respectively. We confirmed previous findings that impounded salt marshes of the northern IRL Estuary produce a high standing stock of resident fishes. Seasonal patterns of abundance were consistent with fish moving between vegetated and unvegetated habitat as water levels changed in the estuary. Differences in density, mean size, and species composition of resident fishes between vegetated and unvegetated habitats have important implications for movement of biomass and nutrients out of salt marsh by piscivores (e.g., wading birds and fishes) via a trophic relay.
Resumo:
Salt River Bay National Historical Park and Ecological Preserve (hereafter, SARI or the park) was created in 1992 to preserve, protect, and interpret nationally significant natural, historical, and cultural resources (United States Congress 1992). The diverse ecosystem within it includes a large mangrove forest, a submarine canyon, coral reefs, seagrass beds, coastal forests, and many other natural and developed landscape elements. These ecosystem components are, in turn, utilized by a great diversity of flora and fauna. A comprehensive spatial inventory of these ecosystems is required for successful management. To meet this need, the National Oceanic and Atmospheric Administration (NOAA) Biogeography Program, in consultation with the National Park Service (NPS) and the Government of the Virgin Islands Department of Planning and Natural Resources (VIDPNR), conducted an ecological characterization. The characterization consists of three complementary components: a text report, digital habitat maps, and a collection of historical aerial photographs. This ecological characterization provides managers with a suite of tools that, when coupled with the excellent pre-existing body of work on SARI resources, enables improved research and monitoring activities within the park (see Appendix F for a list of data products).