950 resultados para root-mean-square roughness


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The investigation of perceptual and cognitive functions with non-invasive brain imaging methods critically depends on the careful selection of stimuli for use in experiments. For example, it must be verified that any observed effects follow from the parameter of interest (e.g. semantic category) rather than other low-level physical features (e.g. luminance, or spectral properties). Otherwise, interpretation of results is confounded. Often, researchers circumvent this issue by including additional control conditions or tasks, both of which are flawed and also prolong experiments. Here, we present some new approaches for controlling classes of stimuli intended for use in cognitive neuroscience, however these methods can be readily extrapolated to other applications and stimulus modalities. Our approach is comprised of two levels. The first level aims at equalizing individual stimuli in terms of their mean luminance. Each data point in the stimulus is adjusted to a standardized value based on a standard value across the stimulus battery. The second level analyzes two populations of stimuli along their spectral properties (i.e. spatial frequency) using a dissimilarity metric that equals the root mean square of the distance between two populations of objects as a function of spatial frequency along x- and y-dimensions of the image. Randomized permutations are used to obtain a minimal value between the populations to minimize, in a completely data-driven manner, the spectral differences between image sets. While another paper in this issue applies these methods in the case of acoustic stimuli (Aeschlimann et al., Brain Topogr 2008), we illustrate this approach here in detail for complex visual stimuli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An ab initio structure prediction approach adapted to the peptide-major histocompatibility complex (MHC) class I system is presented. Based on structure comparisons of a large set of peptide-MHC class I complexes, a molecular dynamics protocol is proposed using simulated annealing (SA) cycles to sample the conformational space of the peptide in its fixed MHC environment. A set of 14 peptide-human leukocyte antigen (HLA) A0201 and 27 peptide-non-HLA A0201 complexes for which X-ray structures are available is used to test the accuracy of the prediction method. For each complex, 1000 peptide conformers are obtained from the SA sampling. A graph theory clustering algorithm based on heavy atom root-mean-square deviation (RMSD) values is applied to the sampled conformers. The clusters are ranked using cluster size, mean effective or conformational free energies, with solvation free energies computed using Generalized Born MV 2 (GB-MV2) and Poisson-Boltzmann (PB) continuum models. The final conformation is chosen as the center of the best-ranked cluster. With conformational free energies, the overall prediction success is 83% using a 1.00 Angstroms crystal RMSD criterion for main-chain atoms, and 76% using a 1.50 Angstroms RMSD criterion for heavy atoms. The prediction success is even higher for the set of 14 peptide-HLA A0201 complexes: 100% of the peptides have main-chain RMSD values < or =1.00 Angstroms and 93% of the peptides have heavy atom RMSD values < or =1.50 Angstroms. This structure prediction method can be applied to complexes of natural or modified antigenic peptides in their MHC environment with the aim to perform rational structure-based optimizations of tumor vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, the spin-echo full-intensity acquired localized (SPECIAL) spectroscopy technique was proposed to unite the advantages of short TEs on the order of milliseconds (ms) with full sensitivity and applied to in vivo rat brain. In the present study, SPECIAL was adapted and optimized for use on a clinical platform at 3T and 7T by combining interleaved water suppression (WS) and outer volume saturation (OVS), optimized sequence timing, and improved shimming using FASTMAP. High-quality single voxel spectra of human brain were acquired at TEs below or equal to 6 ms on a clinical 3T and 7T system for six volunteers. Narrow linewidths (6.6 +/- 0.6 Hz at 3T and 12.1 +/- 1.0 Hz at 7T for water) and the high signal-to-noise ratio (SNR) of the artifact-free spectra enabled the quantification of a neurochemical profile consisting of 18 metabolites with Cramér-Rao lower bounds (CRLBs) below 20% at both field strengths. The enhanced sensitivity and increased spectral resolution at 7T compared to 3T allowed a two-fold reduction in scan time, an increased precision of quantification for 12 metabolites, and the additional quantification of lactate with CRLB below 20%. Improved sensitivity at 7T was also demonstrated by a 1.7-fold increase in average SNR (= peak height/root mean square [RMS]-of-noise) per unit-time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Spectral frequencies of the surface electromyogram (sEMG) increase with contraction force, but debate still exists on whether this increase is affected by various methodological and anatomical factors. This study aimed to investigate the influence of inter-electrode distance (IED) and contraction modality (step-wise vs. ramp) on the changes in spectral frequencies with increasing contraction strength for the vastus lateralis (VL) and vastus medialis (VM) muscles. METHODS: Twenty healthy male volunteers were assessed for isometric sEMG activity of the VM and VL, with the knee at 90° flexion. Subjects performed isometric ramp contractions in knee extension (6-s duration) with the force gradually increasing from 0 to 80 % MVC. Also, subjects performed 4-s step-wise isometric contractions at 10, 20, 30, 40, 50, 60, 70, and 80 % MVC. Interference sEMG signals were recorded simultaneously at different IEDs: 10, 20, 30, and 50 mm. The mean (F mean) and median (F median) frequencies and root mean square (RMS) of sEMG signals were calculated. RESULTS: For all IEDs, contraction modalities, and muscles tested, spectral frequencies increased significantly with increasing level of force up to 50-60 % MVC force. Spectral indexes increased systematically as IED was decreased. The sensitivity of spectral frequencies to changes in contraction force was independent of IED. The behaviour of spectral indexes with increasing contraction force was similar for step-wise and ramp contractions. CONCLUSIONS: In the VL and VM muscles, it is highly unlikely that a particular inter-electrode distance or contraction modality could have prevented the observation of the full extent of the increase in spectral frequencies with increasing force level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND/OBJECTIVES: (1) To cross-validate tetra- (4-BIA) and octopolar (8-BIA) bioelectrical impedance analysis vs dual-energy X-ray absorptiometry (DXA) for the assessment of total and appendicular body composition and (2) to evaluate the accuracy of external 4-BIA algorithms for the prediction of total body composition, in a representative sample of Swiss children. SUBJECTS/METHODS: A representative sample of 333 Swiss children aged 6-13 years from the Kinder-Sportstudie (KISS) (ISRCTN15360785). Whole-body fat-free mass (FFM) and appendicular lean tissue mass were measured with DXA. Body resistance (R) was measured at 50 kHz with 4-BIA and segmental body resistance at 5, 50, 250 and 500 kHz with 8-BIA. The resistance index (RI) was calculated as height(2)/R. Selection of predictors (gender, age, weight, RI4 and RI8) for BIA algorithms was performed using bootstrapped stepwise linear regression on 1000 samples. We calculated 95% confidence intervals (CI) of regression coefficients and measures of model fit using bootstrap analysis. Limits of agreement were used as measures of interchangeability of BIA with DXA. RESULTS: 8-BIA was more accurate than 4-BIA for the assessment of FFM (root mean square error (RMSE)=0.90 (95% CI 0.82-0.98) vs 1.12 kg (1.01-1.24); limits of agreement 1.80 to -1.80 kg vs 2.24 to -2.24 kg). 8-BIA also gave accurate estimates of appendicular body composition, with RMSE < or = 0.10 kg for arms and < or = 0.24 kg for legs. All external 4-BIA algorithms performed poorly with substantial negative proportional bias (r> or = 0.48, P<0.001). CONCLUSIONS: In a representative sample of young Swiss children (1) 8-BIA was superior to 4-BIA for the prediction of FFM, (2) external 4-BIA algorithms gave biased predictions of FFM and (3) 8-BIA was an accurate predictor of segmental body composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinical use of the Stejskal-Tanner diffusion weighted images is hampered by the geometric distortions that result from the large residual 3-D eddy current field induced. In this work, we aimed to predict, using linear response theory, the residual 3-D eddy current field required for geometric distortion correction based on phantom eddy current field measurements. The predicted 3-D eddy current field induced by the diffusion-weighting gradients was able to reduce the root mean square error of the residual eddy current field to ~1 Hz. The model's performance was tested on diffusion weighted images of four normal volunteers, following distortion correction, the quality of the Stejskal-Tanner diffusion-weighted images was found to have comparable quality to image registration based corrections (FSL) at low b-values. Unlike registration techniques the correction was not hindered by low SNR at high b-values, and results in improved image quality relative to FSL. Characterization of the 3-D eddy current field with linear response theory enables the prediction of the 3-D eddy current field required to correct eddy current induced geometric distortions for a wide range of clinical and high b-value protocols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXT: Hamstrings strains are common and debilitating injuries in many sports. Most hamstrings exercises are performed at an inadequately low hip-flexion angle because this angle surpasses 70° at the end of the sprinting leg's swing phase, when most injuries occur. OBJECTIVE: To evaluate the influence of various hip-flexion angles on peak torques of knee flexors in isometric, concentric, and eccentric contractions and on the hamstrings-to-quadriceps ratio. DESIGN: Descriptive laboratory study. SETTING: Research laboratory. Patients and Other Participants: Ten national-level sprinters (5 men, 5 women; age = 21.2 ± 3.6 years, height = 175 ± 6 cm, mass = 63.8 ± 9.9 kg). Intervention(s): For each hip position (0°, 30°, 60°, and 90° of flexion), participants used the right leg to perform (1) 5 seconds of maximal isometric hamstrings contraction at 45° of knee flexion, (2) 5 maximal concentric knee flexion-extensions at 60° per second, (3) 5 maximal eccentric knee flexion-extensions at 60° per second, and (4) 5 maximal eccentric knee flexionextensions at 150° per second. Main Outcome Measure(s): Hamstrings and quadriceps peak torque, hamstrings-to-quadriceps ratio, lateral and medial hamstrings root mean square. RESULTS: We found no difference in quadriceps peak torque for any condition across all hip-flexion angles, whereas hamstrings peak torque was lower at 0° of hip flexion than at any other angle (P < .001) and greater at 90° of hip flexion than at 30° and 60° (P < .05), especially in eccentric conditions. As hip flexion increased, the hamstrings-to-quadriceps ratio increased. No difference in lateral or medial hamstrings root mean square was found for any condition across all hip-flexion angles (P > .05). CONCLUSIONS: Hip-flexion angle influenced hamstrings peak torque in all muscular contraction types; as hip flexion increased, hamstrings peak torque increased. Researchers should investigate further whether an eccentric resistance training program at sprint-specific hip-flexion angles (70° to 80°) could help prevent hamstrings injuries in sprinters. Moreover, hamstrings-to-quadriceps ratio assessment should be standardized at 80° of hip flexion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Anhedonia is defined as a diminished capacity to experience pleasant emotion and is commonly included among the negative symptoms of schizophrenia. However, if patients report experiencing a lower level of pleasure than controls, they report experiencing as much pleasure as controls with online measurements of emotion. OBJECTIVE: The Temporal Experience of Pleasure Scale (TEPS) measures pleasure experienced in the moment and in anticipation of future activities. The TEPS is an 18-item self-report measurement of anticipatory (10 items) and consummatory (eight items) pleasure. The goal of this paper is to assess the psychometric characteristics of the French translation of this scale. METHODS: A control sample was composed of 60 women and 22 men, with a mean age of 38.1 years (S.D.: 10.8). Thirty-six were without qualification and 46 with qualified professional diploma. A sample of 21 patients meeting DSM IV-TR criteria for schizophrenia was recruited among the community psychiatry service of the department of psychiatry in Lausanne. They were five women and 16 men; mean age was of 34.1 years (S.D.: 7.5). Ten obtained a professional qualification and 11 were without qualification. None worked in competitive employment. Their mean dose of chlorpromazine equivalent was 431mg (S.D.: 259). All patients were on atypical antipsychotics. The control sample fulfilled the TEPS and the Physical Anhedonia Scale (PAS). The patient sample fulfilled the TEPS and was independently rated on the Calgary Depression Scale and the Scale for Assessment of Negative Symptoms. For comparison with controls, patients were matched on age, sex and professional qualification. This required the supplementary recruitment of two control subjects. RESULTS: Results with the control sample indicate that the TEPS presents an acceptable internal validity with Crombach alphas of 0.84 for the total scale, 0.74 for the anticipatory pleasure scale and 0.79 for the consummatory pleasure scale. The confirmatory factor analysis indicated that the model is well adapted to our data (chi(2)/dl=1.333; df=134; p<0.0006; root mean square residual, RMSEA=0.064). External validity measured with the PAS showed R=-0.27 (p<0.05) for the consummatory scale and R=-0.26 for the total score. Comparisons between patients and matched controls indicated that patients were significantly lower than control on anticipatory pleasure (t=2.7, df(40), 2-tailed p=0.01; cohen's d=0.83) and on total score of the TEPS (t=2.8, df (40), 2-tailed p=0.01; cohen's d=0.87). The two samples did not differ on consummatory pleasure. The anticipatory pleasure factor and the total TEPS showed significant negative correlation with the SANS anhedonia, respectively R=-0.78 (p<0.01) for the anticipatory factor and R=-0.61 (p<0.01) for the total TEPS. There was also a negative correlation between the anticipatory factor and the SANS avolition of R=-0.50 (p<0.05). These correlations were maintained, with partial correlations controlling for depression and chlorpromazine equivalents. CONCLUSION: The results of this validation show that the French version of the TEPS has psychometric characteristics similar to the original version. These results highlight the discrepancy between results of direct or indirect report of experienced pleasure in patients with schizophrenia. Patients may have difficulties in anticipating the pleasure of future enjoyable activities, but not in experiencing pleasure once in an enjoyable activity. Medication and depression do not seems to modify our results, but this should be better controlled in a longitudinal study. The anticipatory versus consummatory pleasure distinction appears to be useful for the development of new psychosocial interventions, tailored to improve desire in patients suffering from schizophrenia. Major limitations of the study are the small size of patient sample and the under representation of men in the control sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By means of classical Itô's calculus we decompose option prices asthe sum of the classical Black-Scholes formula with volatility parameterequal to the root-mean-square future average volatility plus a term dueby correlation and a term due to the volatility of the volatility. Thisdecomposition allows us to develop first and second-order approximationformulas for option prices and implied volatilities in the Heston volatilityframework, as well as to study their accuracy. Numerical examples aregiven.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the comparative performance of five small areaestimators. We use Monte Carlo simulation in the context of boththeoretical and empirical populations. In addition to the direct andindirect estimators, we consider the optimal composite estimator withpopulation weights, and two composite estimators with estimatedweights: one that assumes homogeneity of within area variance andsquare bias, and another one that uses area specific estimates ofvariance and square bias. It is found that among the feasibleestimators, the best choice is the one that uses area specificestimates of variance and square bias.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: This study investigated the isolated and combined effects of heat [temperate (22 °C/30 % rH) vs. hot (35 °C/40 % rH)] and hypoxia [sea level (FiO2 0.21) vs. moderate altitude (FiO2 0.15)] on exercise capacity and neuromuscular fatigue characteristics. METHODS: Eleven physically active subjects cycled to exhaustion at constant workload (66 % of the power output associated with their maximal oxygen uptake in temperate conditions) in four different environmental conditions [temperate/sea level (control), hot/sea level (hot), temperate/moderate altitude (hypoxia) and hot/moderate altitude (hot + hypoxia)]. Torque and electromyography (EMG) responses following electrical stimulation of the tibial nerve (plantar-flexion; soleus) were recorded before and 5 min after exercise. RESULTS: Time to exhaustion was reduced (P < 0.05) in hot (-35 ± 15 %) or hypoxia (-36 ± 14 %) compared to control (61 ± 28 min), while hot + hypoxia (-51 ± 20 %) further compromised exercise capacity (P < 0.05). However, the effect of temperature or altitude on end-exercise core temperature (P = 0.089 and P = 0.070, respectively) and rating of perceived exertion (P > 0.05) did not reach significance. Maximal voluntary contraction torque, voluntary activation (twitch interpolation) and peak twitch torque decreased from pre- to post-exercise (-9 ± 1, -4 ± 1 and -6 ± 1 % all trials compounded, respectively; P < 0.05), with no effect of the temperature or altitude. M-wave amplitude and root mean square activity were reduced (P < 0.05) in hot compared to temperate conditions, while normalized maximal EMG activity did not change. Altitude had no effect on any measured parameters. CONCLUSION: Moderate hypoxia in combination with heat stress reduces cycling time to exhaustion without modifying neuromuscular fatigue characteristics. Impaired oxygen delivery or increased cardiovascular strain, increasing relative exercise intensity, may have also contributed to earlier exercise cessation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Prior repeated-sprints (6) has become an interesting method to resolve the debate surrounding the principal factors that limits the oxygen uptake (V'O2) kinetics at the onset of exercise [i.e., muscle O2 delivery (5) or metabolic inertia (3)]. The aim of this study was to compare the effects of two repeated-sprints sets of 6x6s separated by different recovery duration between the sprints on V'O2 and muscular de-oxygenation [HHb] kinetics during a subsequent heavy-intensity exercise. Methods: 10 male subjects performed a 6-min constant-load cycling test (T50) at intensity corresponding to half of the difference between V'O2max and the ventilatory threshold. Then, they performed two repeated-sprints sets of 6x6s all-out separated by different recovery duration between the sprints (S1:30s and S2:3min) followed, after 7-min-recovery, by the T50 (S1T50 and S2T50, respectively). V'O2, [HHb] of the vastus lateralis (VL) and surface electromyography activity [i.e., root-mean-square (RMS) and the median frequency of the power density spectrum (MDF)] from VL and vastus medialis (VM) were recorded throughout T50. Models using a bi-exponential function for the overall T50 and a mono-exponential for the first 90s of T50 were used to define V'O2 and [HHb] kinetics respectively. Results: V'O2 mean value was higher in S1 (2.9±0.3l.min-1) than in S2 (1.2±0.3l.min-1); (p<0.001). The peripheral blood flow was increased after sprints as attested by a higher basal heart rate (HRbaseline) (S1T50: +22%; S2T50: +17%; p≤0.008). Time delay [HHb] was shorter for S1T50 and S2T50 than for T50 (-22% for both; p≤0.007) whereas the mean response time of V'O2 was accelerated only after S1 (S1T50: 32.3±2.5s; S2T50: 34.4±2.6s; T50: 35.7±5.4s; p=0.031). There were no significant differences in RMS between the three conditions (p>0.05). MDF of VM was higher during the first 3-min in S1T50 than in T50 (+6%; p≤0.05). Conclusion: The study show that V'O2 kinetics was speeded by prior repeated-sprints with a short (30s) but not a long (3min) inter-sprints-recovery even though the [HHb] kinetics was accelerated and the peripheral blood flow was enhanced after both sprints. S1, inducing a greater PCr depletion (1) and change in the pattern of the fibres recruitment (increase in MDF) compared with S2, may decrease metabolic inertia (2), stimulate the oxidative phosphorylation activation (4) and accelerate V'O2 kinetics at the beginning of the subsequent high-intensity exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to examine the effects of a 5-h hilly run on ankle plantar (PF) and dorsal flexor (DF) force and fatigability. It was hypothesised that DF fatigue/fatigability would be greater than PF fatigue/fatigability. Eight male trail long distance runners (42.5 ± 5.9 years) were tested for ankle PF and DF maximal voluntary isokinetic contraction strength and fatigue resistance tests (percent decrement score), maximal voluntary and electrically evoked isometric contraction strength before and after the run. Maximal EMG root mean square (RMS(max)) and mean power frequency (MPF) values of the tibialis anterior (TA), gastrocnemius lateralis (GL) and soleus (SOL) EMG activity were calculated. The peak torque of the potentiated high- and low-frequency doublets and the ratio of paired stimulation peak torques at 10 Hz over 100 Hz (Db10:100) were analysed for PF. Maximal voluntary isometric contraction strength of PF decreased from pre- to post-run (-17.0 ± 6.2%; P < 0.05), but no significant decrease was evident for DF (-7.9 ± 6.2%). Maximal voluntary isokinetic contraction strength and fatigue resistance remained unchanged for both PF and DF. RMS(max) SOL during maximal voluntary isometric contraction and RMS(max) TA during maximal voluntary isokinetic contraction were decreased (P < 0.05) after the run. For MPF, a significant decrease for TA (P < 0.05) was found and the ratio Db10:100 decreased for PF (-6.5 ± 6.0%; P < 0.05). In conclusion, significant isometric strength loss was only detected for PF after a 5-h hilly run and was partly due to low-frequency fatigue. This study contradicted the hypothesis that neuromuscular alterations due to prolonged hilly running are predominant for DF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to locate the breakpoints of cerebral and muscle oxygenation and muscle electrical activity during a ramp exercise in reference to the first and second ventilatory thresholds. Twenty-five cyclists completed a maximal ramp test on an electromagnetically braked cycle-ergometer with a rate of increment of 25 W/min. Expired gazes (breath-by-breath), prefrontal cortex and vastus lateralis (VL) oxygenation [Near-infrared spectroscopy (NIRS)] together with electromyographic (EMG) Root Mean Square (RMS) activity for the VL, rectus femoris (RF), and biceps femoris (BF) muscles were continuously assessed. There was a non-linear increase in both cerebral deoxyhemoglobin (at 56 ± 13% of the exercise) and oxyhemoglobin (56 ± 8% of exercise) concomitantly to the first ventilatory threshold (57 ± 6% of exercise, p > 0.86, Cohen's d < 0.1). Cerebral deoxyhemoglobin further increased (87 ± 10% of exercise) while oxyhemoglobin reached a plateau/decreased (86 ± 8% of exercise) after the second ventilatory threshold (81 ± 6% of exercise, p < 0.05, d > 0.8). We identified one threshold only for muscle parameters with a non-linear decrease in muscle oxyhemoglobin (78 ± 9% of exercise), attenuation in muscle deoxyhemoglobin (80 ± 8% of exercise), and increase in EMG activity of VL (89 ± 5% of exercise), RF (82 ± 14% of exercise), and BF (85 ± 9% of exercise). The thresholds in BF and VL EMG activity occurred after the second ventilatory threshold (p < 0.05, d > 0.6). Our results suggest that the metabolic and ventilatory events characterizing this latter cardiopulmonary threshold may affect both cerebral and muscle oxygenation levels, and in turn, muscle recruitment responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Prior repeated-sprints (6) has become an interesting method to resolve the debate surrounding the principal factors that limits the oxygen uptake (V'O2) kinetics at the onset of exercise [i.e., muscle O2 delivery (5) or metabolic inertia (3)]. The aim of this study was to compare the effects of two repeated-sprints sets of 6x6s separated by different recovery duration between the sprints on V'O2 and muscular de-oxygenation [HHb] kinetics during a subsequent heavy-intensity exercise. Methods: 10 male subjects performed a 6-min constant-load cycling test (T50) at intensity corresponding to half of the difference between V'O2max and the ventilatory threshold. Then, they performed two repeated-sprints sets of 6x6s all-out separated by different recovery duration between the sprints (S1:30s and S2:3min) followed, after 7-min-recovery, by the T50 (S1T50 and S2T50, respectively). V'O2, [HHb] of the vastus lateralis (VL) and surface electromyography activity [i.e., root-mean-square (RMS) and the median frequency of the power density spectrum (MDF)] from VL and vastus medialis (VM) were recorded throughout T50. Models using a bi-exponential function for the overall T50 and a mono-exponential for the first 90s of T50 were used to define V'O2 and [HHb] kinetics respectively. Results: V'O2 mean value was higher in S1 (2.9±0.3l.min-1) than in S2 (1.2±0.3l.min-1); (p<0.001). The peripheral blood flow was increased after sprints as attested by a higher basal heart rate (HRbaseline) (S1T50: +22%; S2T50: +17%; p≤0.008). Time delay [HHb] was shorter for S1T50 and S2T50 than for T50 (-22% for both; p≤0.007) whereas the mean response time of V'O2 was accelerated only after S1 (S1T50: 32.3±2.5s; S2T50: 34.4±2.6s; T50: 35.7±5.4s; p=0.031). There were no significant differences in RMS between the three conditions (p>0.05). MDF of VM was higher during the first 3-min in S1T50 than in T50 (+6%; p≤0.05). Conclusion: The study show that V'O2 kinetics was speeded by prior repeated-sprints with a short (30s) but not a long (3min) inter-sprints-recovery even though the [HHb] kinetics was accelerated and the peripheral blood flow was enhanced after both sprints. S1, inducing a greater PCr depletion (1) and change in the pattern of the fibres recruitment (increase in MDF) compared with S2, may decrease metabolic inertia (2), stimulate the oxidative phosphorylation activation (4) and accelerate V'O2 kinetics at the beginning of the subsequent high-intensity exercise.