894 resultados para robust extended kalman filter


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The underground scenarios are one of the most challenging environments for accurate and precise 3d mapping where hostile conditions like absence of Global Positioning Systems, extreme lighting variations and geometrically smooth surfaces may be expected. So far, the state-of-the-art methods in underground modelling remain restricted to environments in which pronounced geometric features are abundant. This limitation is a consequence of the scan matching algorithms used to solve the localization and registration problems. This paper contributes to the expansion of the modelling capabilities to structures characterized by uniform geometry and smooth surfaces, as is the case of road and train tunnels. To achieve that, we combine some state of the art techniques from mobile robotics, and propose a method for 6DOF platform positioning in such scenarios, that is latter used for the environment modelling. A visual monocular Simultaneous Localization and Mapping (MonoSLAM) approach based on the Extended Kalman Filter (EKF), complemented by the introduction of inertial measurements in the prediction step, allows our system to localize himself over long distances, using exclusively sensors carried on board a mobile platform. By feeding the Extended Kalman Filter with inertial data we were able to overcome the major problem related with MonoSLAM implementations, known as scale factor ambiguity. Despite extreme lighting variations, reliable visual features were extracted through the SIFT algorithm, and inserted directly in the EKF mechanism according to the Inverse Depth Parametrization. Through the 1-Point RANSAC (Random Sample Consensus) wrong frame-to-frame feature matches were rejected. The developed method was tested based on a dataset acquired inside a road tunnel and the navigation results compared with a ground truth obtained by post-processing a high grade Inertial Navigation System and L1/L2 RTK-GPS measurements acquired outside the tunnel. Results from the localization strategy are presented and analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les entraîneurs en sports acrobatiques disposent de peu d’outils permettant d’améliorer leur compréhension des saltos vrillés et la performance des athlètes. L’objectif de ce mémoire était de développer un environnement graphique de simulation numérique réaliste et utile des acrobaties aériennes. Un modèle composé de 17 segments et de 42 degrés de liberté a été développé et personnalisé à une athlète de plongeon. Un système optoélectronique échantillonné à 300 Hz a permis l’acquisition de huit plongeons en situation réelle d’entraînement. La cinématique articulaire reconstruite avec un filtre de Kalman étendu a été utilisée comme entrée du modèle. Des erreurs quadratiques moyennes de 20° (salto) et de 9° (vrille) entre les performances simulées et réelles ont permis de valider le modèle. Enfin, une formation basée sur le simulateur a été offerte à 14 entraîneurs en sports acrobatiques. Une augmentation moyenne de 11 % des résultats aux questionnaires post-test a permis de constater le potentiel pédagogique de l’outil pour la formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'épaule est souvent affectée par des troubles musculo-squelettiques. Toutefois, leur évaluation est limitée à des mesures qualitatives qui nuisent à la spécificité et justesse du diagnostic. L'analyse de mouvement tridimensionnel pourrait complémenter le traitement conventionnel à l'aide de mesures quantitatives fonctionnelles. L'interaction entre les articulations de l'épaule est estimée par le rythme scapulo-huméral, mais la variabilité prononcée qu'il affiche nuit à son utilisation clinique. Ainsi, l'objectif général de cette thèse était de réduire la variabilité de la mesure du rythme scapulo-huméral. L'effet de la méthode de calcul du rythme scapulo-huméral et des conditions d'exécution du mouvement (rotation axiale du bras, charge, vitesse, activité musculaire) ont été testées. La cinématique des articulations de l'épaule a été calculé par chaîne cinématique et filtre de Kalman étendu sur des sujets sains avec un système optoélectronique. La méthode usuelle de calcul du rythme scapulo-huméral extrait les angles d'élévation gléno-humérale et de rotation latérale scapulo-thoracique. Puisque ces angles ne sont pas co-planaires au thorax, leur somme ne correspond pas à l'angle d'élévation du bras. Une nouvelle approche de contribution articulaire incluant toutes les rotations de chaque articulation est proposée et comparée à la méthode usuelle. La méthode usuelle surestimait systématiquement la contribution gléno-humérale par rapport à la méthode proposée. Ce nouveau calcul du rythme scapulo-huméral permet une évaluation fonctionnelle dynamique de l'épaule et réduit la variabilité inter-sujets. La comparaison d'exercices de réadaptation du supra-épineux contrastant la rotation axiale du bras a été réalisée, ainsi que l'effet d'ajouter une charge externe. L'exercice «full-can» augmentait le rythme scapulo-huméral et la contribution gléno-humérale ce qui concorde avec la fonction du supra-épineux. Au contraire, l'exercice «empty-can» augmentait la contribution scapulo-thoracique ce qui est associé à une compensation pour éviter la contribution gléno-humérale. L'utilisation de charge externe lors de la réadaptation du supra-épineux semble justifiée par un rythme scapulo-huméral similaire et une élévation gléno-humérale supérieure. Le mouvement de l'épaule est souvent mesuré ou évalué en condition statique ou dynamique et passive ou active. Cependant, l'effet de ces conditions sur la coordination articulaire demeure incertain. La comparaison des ces conditions révélait des différences significatives qui montrent l'importance de considérer les conditions de mouvement pour l'acquisition ou la comparaison des données.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report examines how to estimate the parameters of a chaotic system given noisy observations of the state behavior of the system. Investigating parameter estimation for chaotic systems is interesting because of possible applications for high-precision measurement and for use in other signal processing, communication, and control applications involving chaotic systems. In this report, we examine theoretical issues regarding parameter estimation in chaotic systems and develop an efficient algorithm to perform parameter estimation. We discover two properties that are helpful for performing parameter estimation on non-structurally stable systems. First, it turns out that most data in a time series of state observations contribute very little information about the underlying parameters of a system, while a few sections of data may be extraordinarily sensitive to parameter changes. Second, for one-parameter families of systems, we demonstrate that there is often a preferred direction in parameter space governing how easily trajectories of one system can "shadow'" trajectories of nearby systems. This asymmetry of shadowing behavior in parameter space is proved for certain families of maps of the interval. Numerical evidence indicates that similar results may be true for a wide variety of other systems. Using the two properties cited above, we devise an algorithm for performing parameter estimation. Standard parameter estimation techniques such as the extended Kalman filter perform poorly on chaotic systems because of divergence problems. The proposed algorithm achieves accuracies several orders of magnitude better than the Kalman filter and has good convergence properties for large data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the problem of navigation for an unmanned underwater vehicle (UUV) through image mosaicking. It represents a first step towards a real-time vision-based navigation system for a small-class low-cost UUV. We propose a navigation system composed by: (i) an image mosaicking module which provides velocity estimates; and (ii) an extended Kalman filter based on the hydrodynamic equation of motion, previously identified for this particular UUV. The obtained system is able to estimate the position and velocity of the robot. Moreover, it is able to deal with visual occlusions that usually appear when the sea bottom does not have enough visual features to solve the correspondence problem in a certain area of the trajectory

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes MSISpIC, a probabilistic sonar scan matching algorithm for the localization of an autonomous underwater vehicle (AUV). The technique uses range scans gathered with a Mechanical Scanning Imaging Sonar (MSIS), the robot displacement estimated through dead-reckoning using a Doppler velocity log (DVL) and a motion reference unit (MRU). The proposed method is an extension of the pIC algorithm. An extended Kalman filter (EKF) is used to estimate the robot-path during the scan in order to reference all the range and bearing measurements as well as their uncertainty to a scan fixed frame before registering. The major contribution consists of experimentally proving that probabilistic sonar scan matching techniques have the potential to improve the DVL-based navigation. The algorithm has been tested on an AUV guided along a 600 m path within an abandoned marina underwater environment with satisfactory results

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In dam inspection tasks, an underwater robot has to grab images while surveying the wall meanwhile maintaining a certain distance and relative orientation. This paper proposes the use of an MSIS (mechanically scanned imaging sonar) for relative positioning of a robot with respect to the wall. An imaging sonar gathers polar image scans from which depth images (range & bearing) are generated. Depth scans are first processed to extract a line corresponding to the wall (with the Hough transform), which is then tracked by means of an EKF (Extended Kalman Filter) using a static motion model and an implicit measurement equation associating the sensed points to the candidate line. The line estimate is referenced to the robot fixed frame and represented in polar coordinates (rho&thetas) which directly corresponds to the actual distance and relative orientation of the robot with respect to the wall. The proposed system has been tested in simulation as well as in water tank conditions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a navigation system for autonomous underwater vehicles (AUVs) in partially structured environments, such as dams, harbors, marinas or marine platforms. A mechanical scanning imaging sonar is used to obtain information about the location of planar structures present in such environments. A modified version of the Hough transform has been developed to extract line features, together with their uncertainty, from the continuous sonar dataflow. The information obtained is incorporated into a feature-based SLAM algorithm running an Extended Kalman Filter (EKF). Simultaneously, the AUV's position estimate is provided to the feature extraction algorithm to correct the distortions that the vehicle motion produces in the acoustic images. Experiments carried out in a marina located in the Costa Brava (Spain) with the Ictineu AUV show the viability of the proposed approach

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A visual SLAM system has been implemented and optimised for real-time deployment on an AUV equipped with calibrated stereo cameras. The system incorporates a novel approach to landmark description in which landmarks are local sub maps that consist of a cloud of 3D points and their associated SIFT/SURF descriptors. Landmarks are also sparsely distributed which simplifies and accelerates data association and map updates. In addition to landmark-based localisation the system utilises visual odometry to estimate the pose of the vehicle in 6 degrees of freedom by identifying temporal matches between consecutive local sub maps and computing the motion. Both the extended Kalman filter and unscented Kalman filter have been considered for filtering the observations. The output of the filter is also smoothed using the Rauch-Tung-Striebel (RTS) method to obtain a better alignment of the sequence of local sub maps and to deliver a large-scale 3D acquisition of the surveyed area. Synthetic experiments have been performed using a simulation environment in which ray tracing is used to generate synthetic images for the stereo system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquesta tesi tracta el problema del posicionament de robots mòbils quan, en el decurs del moviment, es realitzen mesures angulars relatives al robot de l'orientació de la recta entre un dels seus punts i punts de l'entorn de posició coneguda. Es considera que les mesures angulars són fetes per un sensor làser giratori que detecta diferents reflectors catadiòptrics fixos. La contribució principal és el desenvolupament d'un algorisme dinàmic, basat en un filtre de Kalman estès (EKF), que estima a cada instant de temps l'estat format pels angles associats als reflectors. La simulació hodomètrica dels angles entre mesures directes del sensor làser garanteix l'ús consistent i continuat dels mètodes de triangulació per a determinar la posició i l'orientació del robot. Inclou simulacions informàtiques i experiments per a validar la precisió del mètode de posicionament proposat. En l'experimentació s'utilitza un robot mòbil omnidireccional amb tres rodes de lliscament direccional de corrons esfèrics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a multi-robot localization scenario where, for a period of time, the robot team loses communication with one of the robots due to system error. In this novel approach, extended Kalman filter (EKF) algorithms utilize relative measurements to localize the robots in space. These measurements are used to reliably compensate "dead-com" periods were no information can be exchanged between the members of the robot group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the theoretical development of a nonlinear adaptive filter based on a concept of filtering by approximated densities (FAD). The most common procedures for nonlinear estimation apply the extended Kalman filter. As opposed to conventional techniques, the proposed recursive algorithm does not require any linearisation. The prediction uses a maximum entropy principle subject to constraints. Thus, the densities created are of an exponential type and depend on a finite number of parameters. The filtering yields recursive equations involving these parameters. The update applies the Bayes theorem. Through simulation on a generic exponential model, the proposed nonlinear filter is implemented and the results prove to be superior to that of the extended Kalman filter and a class of nonlinear filters based on partitioning algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the implementation of dynamic data reconciliation techniques for sequential modular models is described. The paper is organised as follows. First, an introduction to dynamic data reconciliation is given. Then, the online use of rigorous process models is introduced. The sequential modular approach to dynamic simulation is briefly discussed followed by a short review of the extended Kalman filter. The second section describes how the modules are implemented. A simulation case study and its results are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel algorithm for concurrent model state and parameter estimation in nonlinear dynamical systems. The new scheme uses ideas from three dimensional variational data assimilation (3D-Var) and the extended Kalman filter (EKF) together with the technique of state augmentation to estimate uncertain model parameters alongside the model state variables in a sequential filtering system. The method is relatively simple to implement and computationally inexpensive to run for large systems with relatively few parameters. We demonstrate the efficacy of the method via a series of identical twin experiments with three simple dynamical system models. The scheme is able to recover the parameter values to a good level of accuracy, even when observational data are noisy. We expect this new technique to be easily transferable to much larger models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A tradicional representação da estrutura a termo das taxas de juros em três fatores latentes (nível, inclinação e curvatura) teve sua formulação original desenvolvida por Charles R. Nelson e Andrew F. Siegel em 1987. Desde então, diversas aplicações vêm sendo desenvolvidas por acadêmicos e profissionais de mercado tendo como base esta classe de modelos, sobretudo com a intenção de antecipar movimentos nas curvas de juros. Ao mesmo tempo, estudos recentes como os de Diebold, Piazzesi e Rudebusch (2010), Diebold, Rudebusch e Aruoba (2006), Pooter, Ravazallo e van Dijk (2010) e Li, Niu e Zeng (2012) sugerem que a incorporação de informação macroeconômica aos modelos da ETTJ pode proporcionar um maior poder preditivo. Neste trabalho, a versão dinâmica do modelo Nelson-Siegel, conforme proposta por Diebold e Li (2006), foi comparada a um modelo análogo, em que são incluídas variáveis exógenas macroeconômicas. Em paralelo, foram testados dois métodos diferentes para a estimação dos parâmetros: a tradicional abordagem em dois passos (Two-Step DNS), e a estimação com o Filtro de Kalman Estendido, que permite que os parâmetros sejam estimados recursivamente, a cada vez que uma nova informação é adicionada ao sistema. Em relação aos modelos testados, os resultados encontrados mostram-se pouco conclusivos, apontando uma melhora apenas marginal nas estimativas dentro e fora da amostra quando as variáveis exógenas são incluídas. Já a utilização do Filtro de Kalman Estendido mostrou resultados mais consistentes quando comparados ao método em dois passos para praticamente todos os horizontes de tempo estudados.