961 resultados para rna sequence


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We evaluated 25 protocol variants of 14 independent computational methods for exon identification, transcript reconstruction and expression-level quantification from RNA-seq data. Our results show that most algorithms are able to identify discrete transcript components with high success rates but that assembly of complete isoform structures poses a major challenge even when all constituent elements are identified. Expression-level estimates also varied widely across methods, even when based on similar transcript models. Consequently, the complexity of higher eukaryotic genomes imposes severe limitations on transcript recall and splice product discrimination that are likely to remain limiting factors for the analysis of current-generation RNA-seq data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the plant-beneficial soil bacterium and biocontrol model organism Pseudomonas fluorescens CHA0, the GacS/GacA two-component system upregulates the production of biocontrol factors, i.e. antifungal secondary metabolites and extracellular enzymes, under conditions of slow, non-exponential growth. When activated, the GacS/GacA system promotes the transcription of a small regulatory RNA (RsmZ), which sequesters the small RNA-binding protein RsmA, a translational regulator of genes involved in biocontrol. The gene for a second GacA-regulated small RNA (RsmY) was detected in silico in various pseudomonads, and was cloned from strain CHA0. RsmY, like RsmZ, contains several characteristic GGA motifs. The rsmY gene was expressed in strain CHA0 as a 118 nt transcript which was most abundant in stationary phase, as revealed by Northern blot and transcriptional fusion analysis. Transcription of rsmY was enhanced by the addition of the strain's own supernatant extract containing a quorum-sensing signal and was abolished in gacS or gacA mutants. An rsmA mutation led to reduced rsmY expression, via a gacA-independent mechanism. Overexpression of rsmY restored the expression of target genes (hcnA, aprA) to gacS or gacA mutants. Whereas mutants deleted for either the rsmY or the rsmZ structural gene were not significantly altered in the synthesis of extracellular products (hydrogen cyanide, 2,4-diacetylphloroglucinol, exoprotease), an rsmY rsmZ double mutant was strongly impaired in this production and in its biocontrol properties in a cucumber-Pythium ultimum microcosm. Mobility shift assays demonstrated that multiple molecules of RsmA bound specifically to RsmY and RsmZ RNAs. In conclusion, two small, untranslated RNAs, RsmY and RsmZ, are key factors that relieve RsmA-mediated regulation of secondary metabolism and biocontrol traits in the GacS/GacA cascade of strain CHA0.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Gac/Rsm signal transduction pathway positively regulates secondary metabolism, production of extracellular enzymes, and biocontrol properties of Pseudomonas fluorescens CHA0 via the expression of three noncoding small RNAs, termed RsmX, RsmY, and RsmZ. The architecture and function of the rsmY and rsmZ promoters were studied in vivo. A conserved palindromic upstream activating sequence (UAS) was found to be necessary but not sufficient for rsmY and rsmZ expression and for activation by the response regulator GacA. A poorly conserved linker region located between the UAS and the -10 promoter sequence was also essential for GacA-dependent rsmY and rsmZ expression, suggesting a need for auxiliary transcription factors. One such factor involved in the activation of the rsmZ promoter was identified as the PsrA protein, previously recognized as an activator of the rpoS gene and a repressor of fatty acid degradation. Furthermore, the integration host factor (IHF) protein was found to bind with high affinity to the rsmZ promoter region in vitro, suggesting that DNA bending contributes to the regulated expression of rsmZ. In an rsmXYZ triple mutant, the expression of rsmY and rsmZ was elevated above that found in the wild type. This negative feedback loop appears to involve the translational regulators RsmA and RsmE, whose activity is antagonized by RsmXYZ, and several hypothetical DNA-binding proteins. This highly complex network controls the expression of the three small RNAs in response to cell physiology and cell population densities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: HIV-1 RNA viral load is a key parameter for reliable treatment monitoring of HIV-1 infection. Accurate HIV-1 RNA quantitation can be impaired by primer and probe sequence polymorphisms as a result of tremendous genetic diversity and ongoing evolution of HIV-1. A novel dual HIV-1 target amplification approach was realized in the quantitative COBAS AmpliPrep/COBAS TaqMan HIV-1 Test, v2.0 (HIV-1 TaqMan test v2.0) to cope with the high genetic diversity of the virus. OBJECTIVES AND STUDY DESIGN: The performance of the new assay was evaluated for sensitivity, dynamic range, precision, subtype inclusivity, diagnostic and analytical specificity, interfering substances, and correlation with the COBAS AmpliPrep/COBAS TaqMan HIV-1 (HIV-1 TaqMan test v1.0) predecessor test in patients specimens. RESULTS: The new assay demonstrated a sensitivity of 20 copies/mL, a linear measuring range of 20-10,000,000 copies/mL, with a lower limit of quantitation of 20 copies/mL. HIV-1 Group M subtypes and HIV-1 Group O were quantified within +/-0.3 log(10) of the assigned titers. Specificity was 100% in 660 tested specimens, no cross reactivity was found for 15 pathogens nor any interference for endogenous substances or 29 drugs. Good comparability with the predecessor assay was demonstrated in 82 positive patient samples. In selected clinical samples 35/66 specimens were found underquantitated in the predecessor assay; all were quantitated correctly in the new assay. CONCLUSIONS: The dual-target approach for the HIV-1 TaqMan test v2.0 enables superior HIV-1 Group M subtype coverage including HIV-1 Group O detection. Correct quantitation of specimens underquantitated in the HIV-1 TaqMan test v1.0 test was demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the metabolically versatile bacterium Pseudomonas aeruginosa, the RNA-binding protein Crc is involved in catabolite repression of a range of degradative genes, such as amiE (encoding aliphatic amidase). We found that a CA-rich sequence (termed CA motif) in the amiE translation initiation region was important for Crc binding. The small RNA CrcZ (407 nt) containing 5 CA motifs was able to bind the Crc protein with high affinity and to remove it from amiE mRNA in vitro. Overexpression of crcZ relieved catabolite repression in vivo, whereas a crcZ mutation pleiotropically prevented the utilization of several carbon sources. The sigma factor RpoN and the CbrA/CbrB two-component system, which is known to maintain a healthy carbon-nitrogen balance, were necessary for crcZ expression. During growth on succinate, a preferred carbon source, CrcZ expression was low, resulting in catabolite repression of amiE and other genes under Crc control. By contrast, during growth on mannitol, a poor carbon source, elevated CrcZ levels correlated with relief of catabolite repression. During growth on glucose, an intermediate carbon source, CrcZ levels and amiE expression were intermediate between those observed in succinate and mannitol media. Thus, the CbrA-CbrB-CrcZ-Crc system allows the bacterium to adapt differentially to various carbon sources. This cascade also regulated the expression of the xylS (benR) gene, which encodes a transcriptional regulator involved in benzoate degradation, in an analogous way, confirming this cascade's global role.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the plant-beneficial soil bacterium Pseudomonas fluorescens CHA0, the production of biocontrol factors (antifungal secondary metabolites and exoenzymes) is controlled at a posttranscriptional level by the GacS/GacA signal transduction pathway involving RNA-binding protein RsmA as a key regulatory element. This protein is assumed to bind to the ribosome-binding site of target mRNAs and to block their translation. RsmA-mediated repression is relieved at the end of exponential growth by two GacS/GacA-controlled regulatory RNAs RsmY and RsmZ, which bind and sequester the RsmA protein. A gene (rsmE) encoding a 64-amino-acid RsmA homolog was identified and characterized in strain CHA0. Overexpression of rsmE strongly reduced the expression of target genes (hcnA, for a hydrogen cyanide synthase subunit; aprA, for the main exoprotease; and phlA, for a component of 2,4-diacetylphloroglucinol biosynthesis). Single null mutations in either rsmA or rsmE resulted in a slight increase in the expression of hcnA, aprA, and phlA. By contrast, an rsmA rsmE double mutation led to strongly increased and advanced expression of these target genes and completely suppressed a gacS mutation. Both the RsmE and RsmA levels increased with increasing cell population densities in strain CHA0; however, the amount of RsmA showed less variability during growth. Expression of rsmE was controlled positively by GacA and negatively by RsmA and RsmE. Mobility shift assays demonstrated specific binding of RsmE to RsmY and RsmZ RNAs. The transcription and stability of both regulatory RNAs were strongly reduced in the rsmA rsmE double mutant. In conclusion, RsmA and RsmE together account for maximal repression in the GacS/GacA cascade of strain CHA0.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Pseudomonas fluorescens CHA0, an antagonist of root-pathogenic fungi, the GacS/GacA two-component system tightly controls the expression of antifungal secondary metabolites and exoenzymes at a posttranscriptional level, involving the RNA-binding protein and global regulator of secondary metabolism RsmA. This protein was purified from P. fluorescens, and RNA bound to it was converted to cDNA, which served as a probe to isolate the corresponding chromosomal locus, rsmZ. This gene encoded a regulatory RNA of 127 nucleotides and a truncated form lacking 35 nucleotides at the 3' end. Expression of rsmZ depended on GacA, increased with increasing population density, and was stimulated by the addition of a solvent-extractable extracellular signal produced by strain CHA0 at the end of exponential growth. This signal appeared to be unrelated to N-acyl-homoserine lactones. A conserved upstream element in the rsmZ promoter, but not the stress sigma factor RpoS, was involved in rsmZ expression. Overexpression of rsmZ effectively suppressed the negative effect of gacS and gacA mutations on target genes, i.e., hcnA (for hydrogen cyanide synthase) and aprA (for the major exoprotease). Mutational inactivation of rsmZ resulted in reduced expression of these target genes in the presence of added signal. Overexpression of rsmA had a similar, albeit stronger negative effect. These results support a model in which GacA upregulates the expression of regulatory RNAs, such as RsmZ of strain CHA0, in response to a bacterial signal. By a titration effect, RsmZ may then alleviate the repressing activity of RsmA on the expression of target mRNAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of mutations, including 5' and 3' deletions, as well as insertions were introduced into the 5' flanking nucleotide sequence of a vaccinia virus late gene. This DNA has been shown previously to contain all the necessary elements for correct regulation of the gene most probably transcribed by the viral RNA polymerase. To facilitate the assays, the mutated DNA was fused to the chloramphenicol acetyltransferase gene and inserted into the genome of live vaccinia virus. The effects of the mutations on expression of the chimeric gene were studied by both enzyme assays and nuclease S1 analysis. The results showed that 5' deletions up to about 15 bp from the putative initiation site of transcription still yielded high levels of gene expression. All mutations, however, that deleted the authentic late mRNA start site, abolished promoter activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A vaccinia virus late gene coding for a major structural polypeptide of 11 kDa was sequenced. Although the 5' flanking gene region is very A+T rich, it shows little homology either to the corresponding region of vaccinia early genes or to consensus sequences characteristic of most eukaryotic genes. Three DNA fragments (100, 200, and 500 base pairs, respectively), derived from the flanking region and including the late gene mRNA start site, were inserted into the coding sequence of the vaccinia virus thymidine kinase (TK) early gene by homologous in vivo recombination. Recombinants were selected on the basis of their TK- phenotype. Cells were infected with the recombinant viruses and RNA was isolated at 1-hr intervals. Transcripts initiating either from the TK early promoter, or from the late gene promoter at its authentic position, or from the translocated late gene promoters within the early gene were detected by nuclease S1 mapping. Early after infection, only transcripts from the TK early promoter were detected. Later in infection, however, transcripts were also initiated from the translocated late promoters. This RNA appeared at the same time and in similar quantities as the RNA from the late promoter at its authentic position. No quantitative differences in promoter efficiency between the 100-, 200-, and 500-base-pair insertions were observed. We conclude that all necessary signals for correct regulation of late-gene expression reside within only 100 base pairs of 5' flanking sequence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel member of the tumor necrosis factor (TNF) receptor family, designated TRAMP, has been identified. The structural organization of the 393 amino acid long human TRAMP is most homologous to TNF receptor 1. TRAMP is abundantly expressed on thymocytes and lymphocytes. Its extracellular domain is composed of four cysteine-rich domains, and the cytoplasmic region contains a death domain known to signal apoptosis. Overexpression of TRAMP leads to two major responses, NF-kappaB activation and apoptosis. TRAMP-induced cell death is inhibited by an inhibitor of ICE-like proteases, but not by Bcl-2. In addition, TRAMP does not appear to interact with any of the known apoptosis-inducing ligands of the TNF family.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quorum sensing, a cell-to-cell communication system based on small signal molecules, is employed by the human pathogen Pseudomonas aeruginosa to regulate virulence and biofilm development. Moreover, regulation by small trans-encoded RNAs has become a focal issue in studies of virulence gene expression of bacterial pathogens. In this study, we have identified the small RNA PhrS as an activator of PqsR synthesis, one of the key quorum-sensing regulators in P. aeruginosa. Genetic studies revealed a novel mode of regulation by a sRNA, whereby PhrS uses a base-pairing mechanism to activate a short upstream open reading frame to which the pqsR gene is translationally coupled. Expression of phrS requires the oxygen-responsive regulator ANR. Thus, PhrS is the first bacterial sRNA that provides a regulatory link between oxygen availability and quorum sensing, which may impact on oxygen-limited growth in P. aeruginosa biofilms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable ternary transcription complexes assembled in vitro, using a HeLa whole-cell extract, have been isolated and visualized by electron microscopy. The formation of these stable complexes on the DNA fragment used as template, the 5' end region of the Xenopus laevis vitellogenin gene B2, depends on factors present in the whole-cell extract, RNA polymerase II and at least two nucleotides. Interestingly, bending in the DNA fragment was frequently observed at the binding site of RNA polymerase II. Dinucleotides that can prime initiation within a short sequence of approximately 10 contiguous nucleotides centered around the initiation site used in vivo, also favour the formation of stable complexes. In addition, pre-initiation complexes were isolated and it was shown that factors in the extract involved in their formation are more abundant than the RNA polymerase II molecules available for binding. The possible implication of this observation relative to the in vivo situation is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In oviparous vertebrates vitellogenin, the precursor of the major yolk proteins, is synthesized in the liver of mature females under the control of estrogen. We have established the organization and primary structure of the 5' end region of the Xenopus laevis vitellogenin A2 gene and of the major chicken vitellogenin gene. The first three homologous exons have exactly the same length in both species, namely 53, 21 and 152 nucleotides, and present an overall sequence homology of 60%. In both species, the 5'-non-coding region of the vitellogenin mRNA measures only 13 nucleotides, nine of which are conserved. In contrast, the corresponding introns of the Xenopus and the chicken vitellogenin gene show no significant sequence homology. Within the 500 nucleotides preceding the 5' end of the genes, at least six blocks with sequence homologies of greater than 70% were detected. It remains to be demonstrated which of these conserved sequences, if any, are involved in the hormone-regulated expression of the vitellogenin genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genomic loci occupied by RNA polymerase (RNAP) III have been characterized in human culture cells by genome-wide chromatin immunoprecipitations, followed by deep sequencing (ChIP-seq). These studies have shown that only ∼40% of the annotated 622 human tRNA genes and pseudogenes are occupied by RNAP-III, and that these genes are often in open chromatin regions rich in active RNAP-II transcription units. We have used ChIP-seq to characterize RNAP-III-occupied loci in a differentiated tissue, the mouse liver. Our studies define the mouse liver RNAP-III-occupied loci including a conserved mammalian interspersed repeat (MIR) as a potential regulator of an RNAP-III subunit-encoding gene. They reveal that synteny relationships can be established between a number of human and mouse RNAP-III genes, and that the expression levels of these genes are significantly linked. They establish that variations within the A and B promoter boxes, as well as the strength of the terminator sequence, can strongly affect RNAP-III occupancy of tRNA genes. They reveal correlations with various genomic features that explain the observed variation of 81% of tRNA scores. In mouse liver, loci represented in the NCBI37/mm9 genome assembly that are clearly occupied by RNAP-III comprise 50 Rn5s (5S RNA) genes, 14 known non-tRNA RNAP-III genes, nine Rn4.5s (4.5S RNA) genes, and 29 SINEs. Moreover, out of the 433 annotated tRNA genes, half are occupied by RNAP-III. Transfer RNA gene expression levels reflect both an underlying genomic organization conserved in dividing human culture cells and resting mouse liver cells, and the particular promoter and terminator strengths of individual genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Small RNAs (sRNAs) are widespread among bacteria and have diverse regulatory roles. Most of these sRNAs have been discovered by a combination of computational and experimental methods. In Pseudomonas aeruginosa, a ubiquitous Gram-negative bacterium and opportunistic human pathogen, the GacS/GacA two-component system positively controls the transcription of two sRNAs (RsmY, RsmZ), which are crucial for the expression of genes involved in virulence. In the biocontrol bacterium Pseudomonas fluorescens CHA0, three GacA-controlled sRNAs (RsmX, RsmY, RsmZ) regulate the response to oxidative stress and the expression of extracellular products including biocontrol factors. RsmX, RsmY and RsmZ contain multiple unpaired GGA motifs and control the expression of target mRNAs at the translational level, by sequestration of translational repressor proteins of the RsmA family. RESULTS: A combined computational and experimental approach enabled us to identify 14 intergenic regions encoding sRNAs in P. aeruginosa. Eight of these regions encode newly identified sRNAs. The intergenic region 1698 was found to specify a novel GacA-controlled sRNA termed RgsA. GacA regulation appeared to be indirect. In P. fluorescens CHA0, an RgsA homolog was also expressed under positive GacA control. This 120-nt sRNA contained a single GGA motif and, unlike RsmX, RsmY and RsmZ, was unable to derepress translation of the hcnA gene (involved in the biosynthesis of the biocontrol factor hydrogen cyanide), but contributed to the bacterium's resistance to hydrogen peroxide. In both P. aeruginosa and P. fluorescens the stress sigma factor RpoS was essential for RgsA expression. CONCLUSION: The discovery of an additional sRNA expressed under GacA control in two Pseudomonas species highlights the complexity of this global regulatory system and suggests that the mode of action of GacA control may be more elaborate than previously suspected. Our results also confirm that several GGA motifs are required in an sRNA for sequestration of the RsmA protein.