999 resultados para ricostruzione 3D triangolazione laser computervision
Resumo:
The complete characterization of rock masses implies the acquisition of information of both, the materials which compose the rock mass and the discontinuities which divide the outcrop. Recent advances in the use of remote sensing techniques – such as Light Detection and Ranging (LiDAR) – allow the accurate and dense acquisition of 3D information that can be used for the characterization of discontinuities. This work presents a novel methodology which allows the calculation of the normal spacing of persistent and non-persistent discontinuity sets using 3D point cloud datasets considering the three dimensional relationships between clusters. This approach requires that the 3D dataset has been previously classified. This implies that discontinuity sets are previously extracted, every single point is labeled with its corresponding discontinuity set and every exposed planar surface is analytically calculated. Then, for each discontinuity set the method calculates the normal spacing between an exposed plane and its nearest one considering 3D space relationship. This link between planes is obtained calculating for every point its nearest point member of the same discontinuity set, which provides its nearest plane. This allows calculating the normal spacing for every plane. Finally, the normal spacing is calculated as the mean value of all the normal spacings for each discontinuity set. The methodology is validated through three cases of study using synthetic data and 3D laser scanning datasets. The first case illustrates the fundamentals and the performance of the proposed methodology. The second and the third cases of study correspond to two rock slopes for which datasets were acquired using a 3D laser scanner. The second case study has shown that results obtained from the traditional and the proposed approaches are reasonably similar. Nevertheless, a discrepancy between both approaches has been found when the exposed planes members of a discontinuity set were hard to identify and when the planes pairing was difficult to establish during the fieldwork campaign. The third case study also has evidenced that when the number of identified exposed planes is high, the calculated normal spacing using the proposed approach is minor than those using the traditional approach.
Resumo:
En este trabajo se estudia el uso de las nubes de puntos en 3D, es decir, un conjunto de puntos en un sistema de referencia cartesiano en R3, para la identificación y caracterización de las discontinuidades que afloran en un macizo rocoso y su aplicación al campo de la Mecánica de Rocas. Las nubes de puntos utilizadas se han adquirido mediante tres técnicas: sintéticas, 3D laser scanner y la técnica de fotogrametría digital Structure From Motion (SfM). El enfoque está orientado a la extracción y caracterización de familias de discontinuidades y su aplicación a la evaluación de la calidad de un talud rocoso mediante la clasificación geomecánica Slope Mass Rating (SMR). El contenido de la misma está dividido en tres bloques, como son: (1) metodología de extracción de discontinuidades y clasificación de la nube de puntos 3D; (2) análisis de espaciados normales en nubes de puntos 3D; y (3) análisis de la evaluación de la calidad geomecánica de taludes rocoso mediante la clasificación geomecánica SMR a partir de nubes de puntos 3D. La primera línea de investigación consiste en el estudio de las nubes de puntos 3D con la finalidad de extraer y caracterizar las discontinuidades planas presentes en la superficie de un macizo rocoso. En primer lugar, se ha recopilado información de las metodologías existentes y la disponibilidad de programas para su estudio. Esto motivó la decisión de investigar y diseñar un proceso de clasificación novedoso, que muestre todos los pasos para su programación e incluso ofreciendo el código programado a la comunidad científica bajo licencia GNU GPL. De esta forma, se ha diseñado una novedosa metodología y se ha programado un software que analiza nubes de puntos 3D de forma semi-automática, permitiendo al usuario interactuar con el proceso de clasificación. Dicho software se llama Discontinuity Set Extractor (DSE). El método se ha validado empleando nubes de puntos sintéticas y adquiridas con 3D laser scanner. En primer lugar, este código analiza la nube de puntos efectuando un test de coplanaridad para cada punto y sus vecinos próximos para, a continuación, calcular el vector normal de la superficie en el punto estudiado. En segundo lugar, se representan los polos de los vectores normales calculados en el paso previo en una falsilla estereográfica. A continuación se calcula la densidad de los polos y los polos con mayor densidad o polos principales. Estos indican las orientaciones de la superficie más representadas, y por tanto las familias de discontinuidades. En tercer lugar, se asigna a cada punto una familia en dependencia del ángulo formado por el vector normal del punto y el de la familia. En este punto el usuario puede visualizar la nube de puntos clasificada con las familias de discontinuidades que ha determinado para validar el resultado intermedio. En cuarto lugar, se realiza un análisis cluster en el que se determina la agrupación de puntos según planos para cada familia (clusters). A continuación, se filtran aquellos que no tengan un número de puntos suficiente y se determina la ecuación de cada plano. Finalmente, se exportan los resultados de la clasificación a un archivo de texto para su análisis y representación en otros programas. La segunda línea de investigación consiste en el estudio del espaciado entre discontinuidades planas que afloran en macizos rocosos a partir de nubes de puntos 3D. Se desarrolló una metodología de cálculo de espaciados a partir de nubes de puntos 3D previamente clasificadas con el fin de determinar las relaciones espaciales entre planos de cada familia y calcular el espaciado normal. El fundamento novedoso del método propuesto es determinar el espaciado normal de familia basándonos en los mismos principios que en campo, pero sin la restricción de las limitaciones espaciales, condiciones de inseguridad y dificultades inherentes al proceso. Se consideraron dos aspectos de las discontinuidades: su persistencia finita o infinita, siendo la primera el aspecto más novedoso de esta publicación. El desarrollo y aplicación del método a varios casos de estudio permitió determinar su ámbito de aplicación. La validación se llevó a cabo con nubes de puntos sintéticas y adquiridas con 3D laser scanner. La tercera línea de investigación consiste en el análisis de la aplicación de la información obtenida con nubes de puntos 3D a la evaluación de la calidad de un talud rocoso mediante la clasificación geomecánica SMR. El análisis se centró en la influencia del uso de orientaciones determinadas con distintas fuentes de información (datos de campo y técnicas de adquisición remota) en la determinación de los factores de ajuste y al valor del índice SMR. Los resultados de este análisis muestran que el uso de fuentes de información y técnicas ampliamente aceptadas pueden ocasionar cambios en la evaluación de la calidad del talud rocoso de hasta una clase geomecánica (es decir, 20 unidades). Asimismo, los análisis realizados han permitido constatar la validez del índice SMR para cartografiar zonas inestables de un talud. Los métodos y programas informáticos desarrollados suponen un importante avance científico para el uso de nubes de puntos 3D para: (1) el estudio y caracterización de las discontinuidades de los macizos rocosos y (2) su aplicación a la evaluación de la calidad de taludes en roca mediante las clasificaciones geomecánicas. Asimismo, las conclusiones obtenidas y los medios y métodos empleados en esta tesis doctoral podrán ser contrastadas y utilizados por otros investigadores, al estar disponibles en la web del autor bajo licencia GNU GPL.
Resumo:
Rock mass classification systems are widely used tools for assessing the stability of rock slopes. Their calculation requires the prior quantification of several parameters during conventional fieldwork campaigns, such as the orientation of the discontinuity sets, the main properties of the existing discontinuities and the geo-mechanical characterization of the intact rock mass, which can be time-consuming and an often risky task. Conversely, the use of relatively new remote sensing data for modelling the rock mass surface by means of 3D point clouds is changing the current investigation strategies in different rock slope engineering applications. In this paper, the main practical issues affecting the application of Slope Mass Rating (SMR) for the characterization of rock slopes from 3D point clouds are reviewed, using three case studies from an end-user point of view. To this end, the SMR adjustment factors, which were calculated from different sources of information and processes, using the different softwares, are compared with those calculated using conventional fieldwork data. In the presented analysis, special attention is paid to the differences between the SMR indexes derived from the 3D point cloud and conventional field work approaches, the main factors that determine the quality of the data and some recognized practical issues. Finally, the reliability of Slope Mass Rating for the characterization of rocky slopes is highlighted.
Resumo:
Underwater video transects have become a common tool for quantitative analysis of the seafloor. However a major difficulty remains in the accurate determination of the area surveyed as underwater navigation can be unreliable and image scaling does not always compensate for distortions due to perspective and topography. Depending on the camera set-up and available instruments, different methods of surface measurement are applied, which make it difficult to compare data obtained by different vehicles. 3-D modelling of the seafloor based on 2-D video data and a reference scale can be used to compute subtransect dimensions. Focussing on the length of the subtransect, the data obtained from 3-D models created with the software PhotoModeler Scanner are compared with those determined from underwater acoustic positioning (ultra short baseline, USBL) and bottom tracking (Doppler velocity log, DVL). 3-D model building and scaling was successfully conducted on all three tested set-ups and the distortion of the reference scales due to substrate roughness was identified as the main source of imprecision. Acoustic positioning was generally inaccurate and bottom tracking unreliable on rough terrain. Subtransect lengths assessed with PhotoModeler were on average 20% longer than those derived from acoustic positioning due to the higher spatial resolution and the inclusion of slope. On a high relief wall bottom tracking and 3-D modelling yielded similar results. At present, 3-D modelling is the most powerful, albeit the most time-consuming, method for accurate determination of video subtransect dimensions.
Resumo:
Langerhans cells (LCs) can be targeted with DNA-coated gold micro-projectiles ("Gene Gun") to induce potent cellular and humoral immune responses. It is likely that the relative volumetric distribution of LCs and keratinocytes within the epidermis impacts on the efficacy of Gene Gun immunization protocols. This study quantified the three-dimensional (3D) distribution of LCs and keratinocytes in the mouse skin model with a near-infrared multiphoton laser-scanning microscope (NIR-MPLSM). Stratum corneum (SC) and viable epidermal thickness measured with MPLSM was found in close agreement with conventional histology. LCs were located in the vertical plane at a mean depth of 14.9 mum, less than 3 mum above the dermo-epidermal boundary and with a normal histogram distribution. This likely corresponds to the fact that LCs reside in the suprabasal layer (stratum germinativum). The nuclear volume of keratinocytes was found to be approximately 1.4 times larger than that of resident LCs (88.6 mum3). Importantly, the ratio of LCs to keratinocytes in mouse ear skin (1:15) is more than three times higher than that reported for human breast skin (1:53). Accordingly, cross-presentation may be more significant in clinical Gene Gun applications than in pre-clinical mouse studies. These interspecies differences should be considered in pre-clinical trials using mouse models.
Resumo:
Este estudo investigou os efeitos do laser de baixa intensidade na velocidade da movimentação ortodôntica de caninos submetidos à retração inicial. A amostra constou de 26 caninos superiores e inferiores, submetidos à retração inicial realizada com mola Niti, com força de 150g. Um dos caninos foi irradiado com laser de diodo, seguindo o protocolo de aplicação: 780nm/20mW/5Jcm2/0,2J por ponto/Et=2J, nos dias 0, 3 e 7 pós-ativação, sendo que o contralateral foi considerado placebo. A retração durou em média 4 meses, num total de 9 aplicações de laser. Os modelos de cada mês foram escaneados com scanner 3D (3Shape) e as imagens tridimensionais foram analisadas por meio do Software Geomagic Studio 5, para a mensuração da quantidade de movimentação dos caninos retraídos. Foi empregada a Análise de Variância a três critérios, seguida pelo teste de Tukey (p<0,05). Para verificação da integridade tecidual, foram efetuadas radiografias periapicais iniciais e finais dos caninos retraídos e dos molares, nas quais foram avaliados uma possível reabsorção na crista alveolar, por meio da distância da crista óssea alveolar até a junção cemento-esmalte e os níveis de reabsorção radicular, por meio do índice de Levander e Malmgreen, sendo este último avaliado somente nos caninos retraídos. Para isto, foi empregado o teste não paramétrico de Wilcoxon (p<0,05). Os resultados indicaram que houve um aumento estatisticamente significante na velocidade da movimentação dos caninos irradiados comparados ao seu contralateral, em todos os tempos avaliados, como também a preservação da integridade tecidual. Com isso, concluiu-se que o laser de diodo pode acelerar a movimentação ortodôntica, podendo contribuir para a diminuição do tempo de tratamento.(AU)
Resumo:
Since 1996 direct femtosecond inscription in transparent dielectrics has become the subject of intensive research. This enabling technology significantly expands the technological boundaries for direct fabrication of 3D structures in a wide variety of materials. It allows modification of non-photosensitive materials, which opens the door to numerous practical applications. In this work we explored the direct femtosecond inscription of waveguides and demonstrated at least one order of magnitude enhancement in the most critical parameter - the induced contrast of the refractive index in a standard borosilicate optical glass. A record high induced refractive contrast of 2.5×10-2 is demonstrated. The waveguides fabricated possess one of the lowest losses, approaching level of Fresnel reflection losses at the glassair interface. High refractive index contrast allows the fabrication of curvilinear waveguides with low bend losses. We also demonstrated the optimisation of the inscription regimes in BK7 glass over a broad range of experimental parameters and observed a counter-intuitive increase of the induced refractive index contrast with increasing translation speed of a sample. Examples of inscription in a number of transparent dielectrics hosts using high repetition rate fs laser system (both glasses and crystals) are also presented. Sub-wavelength scale periodic inscription inside any material often demands supercritical propagation regimes, when pulse peak power is more than the critical power for selffocusing, sometimes several times higher than the critical power. For a sub-critical regime, when the pulse peak power is less than the critical power for self-focusing, we derive analytic expressions for Gaussian beam focusing in the presence of Kerr non-linearity as well as for a number of other beam shapes commonly used in experiments, including astigmatic and ring-shaped ones. In the part devoted to the fabrication of periodic structures, we report on recent development of our point-by-point method, demonstrating the shortest periodic perturbation created in the bulk of a pure fused silica sample, by using third harmonics (? =267 nm) of fundamental laser frequency (? =800 nm) and 1 kHz femtosecond laser system. To overcome the fundamental limitations of the point-by-point method we suggested and experimentally demonstrated the micro-holographic inscription method, which is based on using the combination of a diffractive optical element and standard micro-objectives. Sub-500 nm periodic structures with a much higher aspect ratio were demonstrated. From the applications point of view, we demonstrate examples of photonics devices by direct femtosecond fabrication method, including various vectorial bend-sensors fabricated in standard optical fibres, as well as a highly birefringent long-period gratings by direct modulation method. To address the intrinsic limitations of femtosecond inscription at very shallow depths we suggested the hybrid mask-less lithography method. The method is based on precision ablation of a thin metal layer deposited on the surface of the sample to create a mask. After that an ion-exchange process in the melt of Ag-containing salts allows quick and low-cost fabrication of shallow waveguides and other components of integrated optics. This approach covers the gap in direct fs inscription of shallow waveguide. Perspectives and future developments of direct femtosecond micro-fabrication are also discussed.
Resumo:
We demonstrate a new approach to in-situ measurement of femtosecond laser pulse induced changes in glass enabling the reconstruction in 3D of the induced complex permittivity modification. The technique can be used to provide single shot and time resolved quantitative measurements with a micron scale spatial resolution.
Resumo:
We study the effect of fibre base and grating profile on the efficiency of ultra-long Raman lasers. We show that for the studied parameters, FBG profile does not affect the performance when operating away from the zero-dispersion wavelength.
Resumo:
We measure complex amplitude of scattered wave in the far field, and justify theoretically and numerically solution of the inverse scattering problem. This allows single-shot reconstructing of dielectric function distribution during direct femtosecond laser micro-fabrication.
Resumo:
We measure complex amplitude of scattered wave in the far field, and justify theoretically and numerically solution of the inverse scattering problem. This allows single-shot reconstructing of dielectric function distribution during direct femtosecond laser micro-fabrication.
Resumo:
We measure complex amplitude of scattered wave in the far field, and justify theoretically and numerically solution of the inverse scattering problem. This allows single-shot reconstructing of dielectric function distribution during direct femtosecond laser micro-fabrication.
Resumo:
Femtosecond laser microfabrication has emerged over the last decade as a 3D flexible technology in photonics. Numerical simulations provide an important insight into spatial and temporal beam and pulse shaping during the course of extremely intricate nonlinear propagation (see e.g. [1,2]). Electromagnetics of such propagation is typically described in the form of the generalized Non-Linear Schrdinger Equation (NLSE) coupled with Drude model for plasma [3]. In this paper we consider a multi-threaded parallel numerical solution for a specific model which describes femtosecond laser pulse propagation in transparent media [4, 5]. However our approach can be extended to similar models. The numerical code is implemented in NVIDIA Graphics Processing Unit (GPU) which provides an effitient hardware platform for multi-threded computing. We compare the performance of the described below parallel code implementated for GPU using CUDA programming interface [3] with a serial CPU version used in our previous papers [4,5]. © 2011 IEEE.
Resumo:
In geotechnical engineering, the stability of rock excavations and walls is estimated by using tools that include a map of the orientations of exposed rock faces. However, measuring these orientations by using conventional methods can be time consuming, sometimes dangerous, and is limited to regions of the exposed rock that are reachable by a human. This thesis introduces a 2D, simulated, quadcopter-based rock wall mapping algorithm for GPS denied environments such as underground mines or near high walls on surface. The proposed algorithm employs techniques from the field of robotics known as simultaneous localization and mapping (SLAM) and is a step towards 3D rock wall mapping. Not only are quadcopters agile, but they can hover. This is very useful for confined spaces such as underground or near rock walls. The quadcopter requires sensors to enable self localization and mapping in dark, confined and GPS denied environments. However, these sensors are limited by the quadcopter payload and power restrictions. Because of these restrictions, a light weight 2D laser scanner is proposed. As a first step towards a 3D mapping algorithm, this thesis proposes a simplified scenario in which a simulated 1D laser range finder and 2D IMU are mounted on a quadcopter that is moving on a plane. Because the 1D laser does not provide enough information to map the 2D world from a single measurement, many measurements are combined over the trajectory of the quadcopter. Least Squares Optimization (LSO) is used to optimize the estimated trajectory and rock face for all data collected over the length of a light. Simulation results show that the mapping algorithm developed is a good first step. It shows that by combining measurements over a trajectory, the scanned rock face can be estimated using a lower-dimensional range sensor. A swathing manoeuvre is introduced as a way to promote loop closures within a short time period, thus reducing accumulated error. Some suggestions on how to improve the algorithm are also provided.
Resumo:
Control of the collective response of plasma particles to intense laser light is intrinsic to relativistic optics, the development of compact laser-driven particle and radiation sources, as well as investigations of some laboratory astrophysics phenomena. We recently demonstrated that a relativistic plasma aperture produced in an ultra-thin foil at the focus of intense laser radiation can induce diffraction, enabling polarization-based control of the collective motion of plasma electrons. Here we show that under these conditions the electron dynamics are mapped into the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated experimentally and numerically via 3D particle-in-cell simulations that the degree of ellipticity of the laser polarization strongly influences the spatial-intensity distribution of the beam of multi-MeV protons. The influence on both sheath-accelerated and radiation pressure-accelerated protons is investigated. This approach opens up a potential new route to control laser-driven ion sources.