917 resultados para reverse transcriptase-polymerase chain reaction, novel genes
Resumo:
Squamous cell carcinoma accounts for 20% of all human lung cancers and is strongly linked to cigarette smoking. It develops through premalignant changes that are characterized by high levels of keratin 14 (K14) expression in the airway epithelium and evolve through basal cell hyperplasia, squamous metaplasia and dysplasia to carcinoma in situ and invasive carcinoma. In order to explore the impact of K14 in the pulmonary epithelium that normally lacks both squamous differentiation and K14 expression, human keratin 14 gene hK14 was constitutively expressed in mouse airway progenitor cells using a mouse Clara cell specific 10 kDa protein (CC10) promoter. While the lungs of CC10-hK14 transgenic mice developed normally, we detected increased expression of K14 and the molecular markers of squamous differentiation program such as involucrin, loricrin, small proline-rich protein 1A, transglutaminase 1 and cholesterol sulfotransferase 2B1. In contrast, wild-type lungs were negative. Aging CC10-hK14 mice revealed multifocal airway cell hyperplasia, occasional squamous metaplasia and their lung tumors displayed evidence for multidirectional differentiation. We conclude that constitutive expression of hK14 initiates squamous differentiation program in the mouse lung, but fails to promote squamous maturation. Our study provides a novel model for assessing the mechanisms of premalignant lesions in vivo by modifying differentiation and proliferation of airway progenitor cells. © The Author 2008. Published by Oxford University Press. All rights reserved.
Resumo:
Reliable detection of JAK2-V617F is critical for accurate diagnosis of myeloproliferative neoplasms (MPNs); in addition, sensitive mutation-specific assays can be applied to monitor disease response. However, there has been no consistent approach to JAK2-V617F detection, with assays varying markedly in performance, affecting clinical utility. Therefore, we established a network of 12 laboratories from seven countries to systematically evaluate nine different DNA-based quantitative PCR (qPCR) assays, including those in widespread clinical use. Seven quality control rounds involving over 21,500 qPCR reactions were undertaken using centrally distributed cell line dilutions and plasmid controls. The two best-performing assays were tested on normal blood samples (n=100) to evaluate assay specificity, followed by analysis of serial samples from 28 patients transplanted for JAK2-V617F-positive disease. The most sensitive assay, which performed consistently across a range of qPCR platforms, predicted outcome following transplant, with the mutant allele detected a median of 22 weeks (range 6-85 weeks) before relapse. Four of seven patients achieved molecular remission following donor lymphocyte infusion, indicative of a graft vs MPN effect. This study has established a robust, reliable assay for sensitive JAK2-V617F detection, suitable for assessing response in clinical trials, predicting outcome and guiding management of patients undergoing allogeneic transplant.
Resumo:
Mycoplasma pneumoniae (M. pneumoniae) is a common pathogen in cases of atypical pneumonia. Most individuals with Mycoplasma pneumonia run a benign course, with non-specific symptoms of malaise, fever and non-productive cough that usually resolve with no long-term sequelae. Acute lung injury is not commonly seen in Mycoplasma pneumonia. We report a case of acute respiratory distress syndrome cause by M. pneumoniae diagnosed by quantitative real-time polymerase chain reaction (RT-PCR).
Resumo:
CONTEXT: The formation of primordial follicles occurs during fetal life yet is critical to the determination of adult female fertility. Prior to this stage, germ cells proliferate, enter meiosis, and associate with somatic cells. Growth and survival factors implicated in these processes include activin A (INHBA), the neurotrophins BDNF and NT4 (NTF5), and MCL1. The prostaglandins have pleiotrophic roles in reproduction, notably in ovulation and implantation, but there are no data regarding roles for prostaglandins in human fetal ovarian development.
OBJECTIVE: The aim of the study was to investigate a possible role for prostaglandin (PG) E(2) in human fetal ovary development.
DESIGN: In vitro analysis of ovarian development between 8 and 20 wk gestation was performed.
MAIN OUTCOME MEASURE(S): The expression patterns of PG synthesis enzymes and the PGE(2) receptors EP2 and EP4 in the ovary were assessed, and downstream effects of PGE(2) on gene expression were analyzed.
RESULTS: Ovarian germ cells express the PG synthetic enzymes COX2 and PTGES as well as the EP2 and EP4 receptors, whereas COX1 is expressed by ovarian somatic cells. Treatment in vitro with PGE(2) increased the expression of BDNF mRNA 1.7 +/- 0.16-fold (P = 0.004); INHBA mRNA, 2.1 +/- 0.51-fold (P = 0.04); and MCL1 mRNA, 1.15 +/- 0.06-fold (P = 0.04), but not that of OCT4, DAZL, VASA, NTF5, or SMAD3.
CONCLUSIONS: These data indicate novel roles for PGE(2) in the regulation of germ cell development in the human ovary and show that these effects may be mediated by the regulation of factors including BDNF, activin A, and MCL1.
Resumo:
Aberrant activation of Wnts is common in human cancers, including prostate. Hypermethylation associated transcriptional silencing of Wnt antagonist genes SFRPs (Secreted Frizzled-Related Proteins) is a frequent oncogenic event. The significance of this is not known in prostate cancer. The objectives of our study were to (i) profile Wnt signaling related gene expression and (ii) investigate methylation of Wnt antagonist genes in prostate cancer. Using TaqMan Low Density Arrays, we identified 15 Wnt signaling related genes with significantly altered expression in prostate cancer; the majority of which were upregulated in tumors. Notably, histologically benign tissue from men with prostate cancer appeared more similar to tumor (r = 0.76) than to benign prostatic hyperplasia (BPH; r = 0.57, p < 0.001). Overall, the expression profile was highly similar between tumors of high (≥ 7) and low (≤ 6) Gleason scores. Pharmacological demethylation of PC-3 cells with 5-Aza-CdR reactivated 39 genes (≥ 2-fold); 40% of which inhibit Wnt signaling. Methylation frequencies in prostate cancer were 10% (2/20) (SFRP1), 64.86% (48/74) (SFRP2), 0% (0/20) (SFRP4) and 60% (12/20) (SFRP5). SFRP2 methylation was detected at significantly lower frequencies in high-grade prostatic intraepithelial neoplasia (HGPIN; 30%, (6/20), p = 0.0096), tumor adjacent benign areas (8.82%, (7/69), p < 0.0001) and BPH (11.43% (4/35), p < 0.0001). The quantitative level of SFRP2 methylation (normalized index of methylation) was also significantly higher in tumors (116) than in the other samples (HGPIN = 7.45, HB = 0.47, and BPH = 0.12). We show that SFRP2 hypermethylation is a common event in prostate cancer. SFRP2 methylation in combination with other epigenetic markers may be a useful biomarker of prostate cancer.
Resumo:
OBJECTIVE: The efficacy of docetaxel has recently been shown to be increased under hypoxic conditions through the down-regulation of hypoxia-inducible-factor 1α (HIF1A). Overexpression of the hypoxia-responsive gene class III β-tubulin (TUBB3) has been associated with docetaxel resistance in a number of cancer models. We propose that administration of docetaxel to prostate patients has the potential to reduce the hypoxic response through HIF1A down-regulation and that TUBB3 down-regulation participates in sensitivity to docetaxel.
METHODS: The cytotoxic effect of docetaxel was determined in both 22Rv1 and DU145 prostate cancer cell lines and correlated with HIF1A expression levels under aerobic and hypoxic conditions. Hypoxia-induced chemoresistance was investigated in a pair of isogenic docetaxel-resistant PC3 cell lines. Basal and hypoxia-induced TUBB3 gene expression levels were determined and correlated with methylation status at the HIF1A binding site.
RESULTS: Prostate cancer cells were sensitive to docetaxel under both aerobic and hypoxic conditions. Hypoxic cytotoxicity of docetaxel was consistent with a reduction in detected HIF1A levels. Sensitivity correlated with reduced basal and hypoxia-induced HIF1A and TUBB3 expression levels. The TUBB3 HIF1A binding site was hypermethylated in prostate cell lines and tumor specimens, which may exclude transcription factor binding and induction of TUBB3 expression. However, acquired docetaxel resistance was not associated with TUBB3 overexpression.
CONCLUSION: These data suggest that the hypoxic nature of a tumor may have relevance as regard to their response to docetaxel. Further investigation into the nature of this relationship may allow identification of novel targets to improve tumor control in prostate cancer patients.
Resumo:
It is important to be able to assess the contribution of donor cells to the graft followmg bone marrow transplantation (BMT), as complete engraftment of marrow progenitors that can give rise to long term donor derived hemopoiesis may be important in long-term disease-free survival. The contribution of the donor marrow, both in terms of filling the marrow "space" created by the intense conditioning regimen and in its ability to mediate a graft versus leukemia effect may be assessed by studying the kinetics of the engraftment process. As BMT involves repopulation of the host hemopoietic system with donor cells, recipients of allogeneic marrow are referred to as hemopoietic chimeras. A donor chimera is an individual who exhibits complete donor hemopoiesis and we would imagine that donor chimertsm carries the best long-term prognosis. A patient who has both donor and recipient cells coexistmg in a stable fashion post-BMT without hematological evidence of relapse or graft rejection is referred to as a mixed chimera. Mixed chimerism may be a prelude to graft rejection or leukemic relapse; therefore, it is important to be able to monitor the presence of these cells in a precise manner.
Resumo:
A 3-year old child with juvenile chronic myeloid leukaemia received a T cell-depleted BMT from a male unrelated donor. There was early graft failure associated with increasing splenomegaly and hypersplenism. Splenectomy was performed 53 days post-transplant and was followed by autologous marrow recovery with return of leukaemia. A second unrelated donor BMT was performed 9 months later using T cell-replete marrow from a similarly matched female donor. Grade 2 GVHD involving the skin and gut responded to treatment with steroids. Chimaerism was assessed using Y-specific polymerase chain reaction (PCR) and microsatellites. Samples taken at the time of splenectomy showed no donor marrow engraftment but there was significant engraftment in the spleen. Following the second transplant, donor-type haematopoiesis was documented using a panel of microsatellite probes. The patient remains well 6 months after transplant. Splenectomy should be considered prior to transplant in patients with significant splenomegaly and hypersplenism. Partial chimaerism in the spleen, but not bone marrow, post-BMT, has not previously been documented. PCR technology is a useful and highly sensitive way to assess chimaerism post-BMT and is informative in sex-matched cases, whilst the small amount of material required is advantageous in paediatric patients.
Resumo:
We report a case of acute lymphoblastic leukaemia relapsing after allogeneic bone marrow transplantation in which the polymerase chain reaction (PCR) was used to assess chimeric status. This technique demonstrated the progressive reappearance of host cells prior to clinical relapse. The relapse was of host cell origin as shown by the presence of female (recipient) metaphases containing an abnormal chromosomal marker (iso 9q) which had also been present at initial diagnosis. The emergence of host cells in this case, detected only by PCR techniques but not by cytogenetic methods, appeared to herald overt relapse. PCR analysis provides a sensitive tool for detecting a progressive rise in host cell numbers which may predict clinical relapse.
Resumo:
Chimaerism was assessed in five recipients following sex mismatched allogeneic bone marrow transplantation. Techniques included karyotyping of bone marrow cells, dot blot DNA analysis of blood and bone marrow suspensions, and in vitro amplification of DNA by the polymerase chain reaction (PCR) using blood and bone marrow suspensions and stored bone marrow slides. Results of karyotypic analysis suggested complete chimaerism in four patients, while in one patient mixed chimaerism was detected. Mixed chimaerism was also detected, however, in a second patient using PCR and confirmed by dot blot analysis on all tissues examined. PCR is a sensitive tool for investigation of chimaerism following bone marrow transplantation. Since this technique does not require radioactivity, it is an attractive method for use in a clinical laboratory. This technique represents a further development in the use of DNA methodologies in the assessment of haematological disease.
Resumo:
Membrane type-1 matrix metalloproteinase (MT1-MMP) is a zinc-binding endopeptidase, which plays a crucial role in tumour growth, invasion and metastasis. We have shown previously that MT1-MMP has higher expression levels in the human urothelial cell carcinoma (UCC) tissue. We show here that siRNA against MT1-MMP blocks invasion in UCC cell lines. Invasion is also blocked by broad-spectrum protease and MMP inhibitors including tissue inhibitor of metalloproteinase-1 and -2. Membrane type-1-MMP can also regulate transcription. We have used expression arrays to identify genes that are differentially transcribed when siRNA is used to suppress MT1-MMP expression. Upon MT1-MMP knockdown, Dickkopf-3 (DKK3) expression was highly upregulated. The stability of DKK3 mRNA was unaffected under these conditions, suggesting transcriptional regulation of DKK3 by MT1-MMP. Dickkopf-3 has been previously shown to inhibit invasion. We confirm that the overexpression of DKK3 leads to decreased invasive potential as well as delayed wound healing. We show for the first time that the effects of MT1-MMP on cell invasion are mediated in part through changes in DKK3 gene transcription.
Resumo:
A fluorescence in situ hybridisation (FISH) assay has been used to screen for ETV1 gene rearrangements in a cohort of 429 prostate cancers from patients who had been diagnosed by trans-urethral resection of the prostate. The presence of ETV1 gene alterations (found in 23 cases, 5.4%) was correlated with higher Gleason Score (P=0.001), PSA level at diagnosis (P=<0.0001) and clinical stage (P=0.017) but was not linked to poorer survival. We found that the six previously characterised translocation partners of ETV1 only accounted for 34% of ETV1 re-arrangements (eight out of 23) in this series, with fusion to the androgen-repressed gene C15orf21 representing the commonest event (four out of 23). In 5'-RACE experiments on RNA extracted from formalin-fixed tissue we identified the androgen-upregulated gene ACSL3 as a new 5'-translocation partner of ETV1. These studies report a novel fusion partner for ETV1 and highlight the considerable heterogeneity of ETV1 gene rearrangements in human prostate cancer.