985 resultados para residential buildings


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os centros históricos são o resultado de um parque habitacional corrente, com uma grande uniformidade, coerência construtiva e espaços urbanos de modo a proporcionar uma identidade própria. Um dos grandes problemas urbanos são as vastas áreas degradadas do ponto de vista arquitetónico como também social, cultural e económico. Conhecidos os principais problemas dos edifícios de habitação e suas causas, para sua resolução existe necessidade de adaptar o processo de reabilitação tradicional ao conceito de sustentabilidade. Estes dois assuntos conjugados são atualmente emergentes, devido à necessidade de reabilitação do parque habitacional, nomeadamente centros históricos. A casa burguesa do Porto apresenta um elevado grau de degradação, porém apesar de existentes as ações de intervenção que sobre ela reincidem, não são proporcionais à necessidade atual. A cidade do Porto é marcada, maioritariamente, pelas Casas Burguesas, das quais foram executadas segundo padrões de conforto e de utilização da época. É, então, fundamental um estudo pormenorizado da casa burguesa do Porto, avaliando o contexto em que esta se encere (na cidade e na respetiva habitação), os subsistemas construtivos e as praticas de reabilitação.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To achieve CO2 emissions reductions the UK Building Regulations require developers of new residential buildings to calculate expected CO2 emissions arising from their energy consumption using a methodology such as Standard Assessment Procedure (SAP 2005) or, more recently SAP 2009. SAP encompasses all domestic heat consumption and a limited proportion of the electricity consumption. However, these calculations are rarely verified with real energy consumption and related CO2 emissions. This paper presents the results of an analysis based on weekly head demand data for more than 200 individual flats. The data is collected from recently built residential development connected to a district heating network. A methodology for separating out the domestic hot water use (DHW) and space heating demand (SH) has been developed and compares measured values to the demand calculated using SAP 2005 and 2009 methodologies. The analysis shows also the variance in DHW and SH consumption between both size of the flats and tenure (privately owned or housing association). Evaluation of the space heating consumption includes also an estimation of the heating degree day (HDD) base temperature for each block of flats and its comparison to the average base temperature calculated using the SAP 2005 methodology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The assessment of building energy efficiency is one of the most effective measures for reducing building energy consumption. This paper proposes a holistic method (HMEEB) for assessing and certifying building energy efficiency based on the D-S (Dempster-Shafer) theory of evidence and the Evidential Reasoning (ER) approach. HMEEB has three main features: (i) it provides both a method to assess and certify building energy efficiency, and exists as an analytical tool to identify improvement opportunities; (ii) it combines a wealth of information on building energy efficiency assessment, including identification of indicators and a weighting mechanism; and (iii) it provides a method to identify and deal with inherent uncertainties within the assessment procedure. This paper demonstrates the robustness, flexibility and effectiveness of the proposed method, using two examples to assess the energy efficiency of two residential buildings, both located in the ‘Hot Summer and Cold Winter’ zone in China. The proposed certification method provides detailed recommendations for policymakers in the context of carbon emission reduction targets and promoting energy efficiency in the built environment. The method is transferable to other countries and regions, using an indicator weighting system to modify local climatic, economic and social factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Given the background of serious urban pollution in Hong Kong, the intake fraction (iF) of carbon monoxide due to mobile vehicles in urban area of Hong Kong is investigated and estimated to be 600 per million, much higher than those in US urban areas, Helsinki and even Beijing, indicating the high exposure level to urban pollutants in Hong Kong. The dependence of iF to the metrological factors is also discussed. Easterly and northerly winds contribute most to the total iF value. A new method of predicting ventilation rate for a city based on iF concept is proposed. City ventilation rates for different cities are calculated and compared. It is found that Hong Kong has to face the fact that it has the lowest ventilation rate and ACH.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Technological change has often been presented as a readily accepted means by which long-term greenhouse gas (GHG) emission reductions can be achieved. Cities are the future centers of economic growth, with the global population becoming predominantly urban; hence, increases or reductions of GHG emissions are tied to their energy strategies. This research examines the likelihood of a developed world city (the Greater Toronto Area) achieving an 80% reduction in GHG emissions through policy-enabled technological change. Emissions are examined from 3 major sources: light duty passenger vehicles, residential buildings and commercial/institutional buildings. Logistic diffusion curves are applied for the adoption of alternative vehicle technologies, building retrofits and high performance new building construction. This research devises high, low and business-as-usual estimates of future technological adoption and finds that even aggressive scenarios are not sufficient to achieve an 80% reduction in GHG emissions by 2050. This further highlights the challenges faced in maintaining a relatively stable climate. Urban policy makers must consider that the longer the lag before this transition occurs, the greater the share of GHG emissions mitigation that must addressed through behavioural change in order to meet the 2050 target, which likely poses greater political challenges.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Within the frame of the project REBUS, "Competitive solar heating systems for residential buildings", which is financed by Nordic Energy Research, a new type of compact solar combisystem with high degree of prefabrication was developed. A hydraulic and control concept was designed with the goal to get highest system efficiency for use with either a condensing natural gas boiler or a pellet boiler. Especially when using the potential of high peak power of modern condensing natural gas boilers, a new operation strategy of a natural gas boiler/solar combisystem can increase the energy savings of a small solar combisystem by about 80% compared to conventional operation strategies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The need for heating and cooling in buildings constitutes a considerable part of the total energy use in a country and reducing this need is of outmost importance in order to reach national and international goals for reducing energy use and emissions. One important way of reaching these goals is to increase the proportion of renewable energy used for heating and cooling of buildings. Perhaps the largest obstacle with this is the often occurring mismatch between the availability of renewable energy and the need for heating or cooling, hindering this energy to be used directly. This is one of the problems that can be solved by using thermal energy storage (TES) in order to save the heat or cold from when it is available to when it is needed. This thesis is focusing on the combination of TES techniques and buildings to achieve increased energy efficiency for heating and cooling. Various techniques used for TES as well as the combination of TES in buildings have been investigated and summarized through an extensive literature review. A survey of the Swedish building stock was also performed in order to define building types common in Sweden. Within the scope of this thesis, the survey resulted in the selection of three building types, two single family houses and one office building, out of which the two residential buildings were used in a simulation case study of passive TES with increased thermal mass (both sensible and latent). The second case study presented in the thesis is an evaluation of an existing seasonal borehole storage of solar heat for a residential community. In this case, real measurement data was used in the evaluation and in comparisons with earlier evaluations. The literature reviews showed that using TES opens up potential for reduced energy demand and reduced peak heating and cooling loads as well as possibilities for an increased share of renewable energy to cover the energy demand. By using passive storage through increased thermal mass of a building it is also possible to reduce variations in the indoor temperature and especially reduce excess temperatures during warm periods, which could result in avoiding active cooling in a building that would otherwise need it. The analysis of the combination of TES and building types confirmed that TES has a significant potential for increased energy efficiency in buildings but also highlighted the fact that there is still much research required before some of the technologies can become commercially available. In the simulation case study it was concluded that only a small reduction in heating demand is possible with increased thermal mass, but that the time with indoor temperatures above 24 °C can be reduced by up to 20%. The case study of the borehole storage system showed that although the storage system worked as planned, heat losses in the rest of the system as well as some problems with the system operation resulted in a lower solar fraction than projected. The work presented within this thesis has shown that TES is already used successfully for many building applications (e.g. domestic hot water stores and water tanks for storing solar heat) but that there still is much potential in further use of TES. There are, however, barriers such as a need for more research for some storage technologies as well as storage materials, especially phase change material storage and thermochemical storage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Buildings have a significant impact on environmental quality, resource use, human health and productivity. One definition of sustainable building is that which meets current building needs and reduces impacts on future generations by integrating building materials and methods that promote environmental quality, economic vitality, and social benefit’ (City of Seattle, 2006). In response to a changing view of
sustainability the Building Code of Australia (BCA) adopted energy measures in 2005 to residential buildings and, in 2006, to Class 1 – 9 buildings. In many respects the measures represented a watershed for the Australian Building Regulations which had not included sustainability within the BCA. The goals of the BCA are to enable the achievement and maintenance of acceptable standards of structural sufficiency, safety (including safety from fire), health and amenity for the benefit of the community now and in the future (ABCB, 2004a). As with any change some Building Surveyors and construction practitioners viewed these measures with apprehension. How would the measures be assessed? Furthermore, was the BCA the appropriate place for these measures and was this a broadening of the scope of the building regulations beyond
its traditional remit of health and life safety in buildings? This research used a questionnaire survey the canvass the views and perceptions of Building Surveyors and Architects with regards to sustainability and the BCA in 2006.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The impacts on the environment from human activities are of increasing concern. The need to consider the reduction in energy consumption is of particular interest, especially in the construction and operation of buildings, which accounts for between 30 and 40% of Australia's national energy consumption. Much past and more recent emphasis has been placed on methods for reducing the energy consumed in the operation of buildings. With the energy embodied in these buildings having been shown to account for an equally large proportion of a building's life cycle energy consumption, there is a need to look at ways of reducing the embodied energy of buildings and related products. Life cycle assessment (LCA) is considered to be the most appropriate tool for assessing the life cycle energy consumption of buildings and their products. The life cycle inventory analysis (LCIA) step of a LCA, where an inventory of material and energy inputs is gathered, may currently suffer from several limitations, mainly concerned with the use of incomplete and unreliable data sources and LCIA methods. These traditional methods of LCIA include process-based and input-output-based LCIA. Process-based LCIA uses process specific data, whilst input-output-based LCIA uses data produced from an analysis of the flow of goods and services between sectors of the Australian economy, also known as input-output data. With the incompleteness and unreliability of these two respective methods in mind, hybrid LCIA methods have been developed to minimise the errors associated with traditional LCIA methods, combining both process and input-output data. Hybrid LCIA methods based on process data have shown to be incomplete. Hybrid LCIA methods based on input-output data involve substituting available process data into the input-output model minimising the errors associated with process-based hybrid LCIA methods. However, until now, this LCIA method had not been tested for its level of completeness and reliability. The aim of this study was to assess the reliability and completeness of hybrid life cycle inventory analysis, as applied to the Australian construction industry. A range of case studies were selected in order to apply the input-output-based hybrid LCIA method and evaluate the subsequent results as obtained from each case study. These case studies included buildings: two commercial office buildings, two residential buildings, a recreational building; and building related products: a solar hot water system, a building integrated photovoltaic system and a washing machine. The range of building types and products selected assisted in testing the input-output-based hybrid LCIA method for its applicability across a wide range of product types. The input-output-based hybrid LCIA method was applied to each of the selected case studies in order to obtain their respective embodied energy results. These results were then evaluated with the use of a number of evaluation methods. These evaluation methods included an analysis of the difference between the process-based and input-output-based hybrid LCIA results as an evaluation of the completeness of the process-based LCIA method. The second method of evaluation used was a comparison between equivalent process and input-output values used in the input-output-based hybrid LCIA method as a measure of reliability. It was found that the results from a typical process-based LCIA and process-based hybrid LCIA have a large gap when compared to input-output-based hybrid LCIA results (up to 80%). This gap has shown that the currently available quantity of process data in Australia is insufficient. The comparison between equivalent process-based and input-output-based LCIA values showed that the input-output data does not provide a reliable representation of the equivalent process values, for material energy intensities, material inputs and whole products. Therefore, the use of input-output data to account for inadequate or missing process data is not reliable. However, as there is currently no other method for filling the gaps in traditional process-based LCIA, and as input-output data is considered to be more complete than process data, and the errors may be somewhat lower, using input-output data to fill the gaps in traditional process-based LCIA appears to be better than not using any data at all. The input-output-based hybrid LCIA method evaluated in this study has shown to be the most sophisticated and complete currently available LCIA method for assessing the environmental impacts associated with buildings and building related products. This finding is significant as the construction and operation of buildings accounts for a large proportion of national energy consumption. The use of the input-output-based hybrid LCIA method for products other than those related to the Australian construction industry may be appropriate, especially if the material inputs of the product being assessed are similar to those typically used in the construction industry. The input-output-based hybrid LCIA method has been used to correct some of the errors and limitations associated with previous LCIA methods, without the introduction of any new errors. Improvements in current input-output models are also needed, particularly to account for the inclusion of capital equipment inputs (i.e. the energy required to manufacture the machinery and other equipment used in the production of building materials, products etc.). Although further improvements in the quantity of currently available process data are also needed, this study has shown that with the current available embodied energy data for LCIA, the input-output-based hybrid LCIA appears to provide the most reliable and complete method for use in assessing the environmental impacts of the Australian construction industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The significance of this research is that it is the first comprehensive analysis of cost performance across Australia. It is well known that measuring cost performance is not an easy task; comparisons of building projects on a `like-for-like’ basis are uncommon, and rarely occur in the real world. However, this paper analyses 120 different structural frame models that represent various; structural designs, construction methods, grid spans, and locations.

The research produced price models that were representative of structural frames used in medium-rise non-residential buildings. It is based on pricing a number of standard building frame designs in five Australian cities. The results represent the cost of producing the same building in different locations, using similar building construction techniques. By utilizing a standard model, project variables like building quality, ground conditions and access were eradicated, thereby facilitating an unbiased comparison of cost performance. I addition, the results are an indicator of building productivity based on costs per square metre of various construction types.

This research provides the Australian industry with robust data about the relative cost performance of various structural building frames. In addition, this research has wider implications because the models may also become useful data for the measuring relative cost performance in other countries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

User behaviour significantly affects energy consumption simulation estimates, which can consequently influence architectural design decisions at an early stage. Different regional behavioural patterns could, therefore, hinder the applicability of certain architectural and environmental strategies. Through questionnaires analysis and field studies, this study investigates the pattern use of manual control of windows, shading and air condition units, in residential buildings in Greece, during summer. Initial findings of the analysis indicate significant interaction of Greek residents with the building shell, in their effort to maintain comfort.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Governments in Australia are faced with policy implementation that mandates higher energy efficient housing (Foran, Lenzen & Dey 2005). To this effect, the National Construction Code (NCC) 2013 stipulates the minimum energy performance for residential buildings as 114MJ/m2 per annum or 6 stars on an energy rating scale. Compliance with this minimum is mandatory but there are several methods through which residential buildings can be rated to comply with the deemed to satisfy provisions outlined in the NCC. FirstRate5 is by far the most commonly used simulation software used in Victoria, Australia. Meanwhile, Building Information Modelling (BIM), using software such as ArchiCAD has gained a foothold in the industry. The energy simulation software within ArchiCAD, EcoDesigner, enables the reporting on the energy performance based on BIM elements that contain thermal information. This research is founded on a comparative study between FirstRate5 and EcoDesigner. Three building types were analysed and compared. The comparison finds significant differences between simulations, being, measured areas, thermal loads and potentially serious shortcomings within FirstRate5, that are discussed along with the future potential of a fully BIM-integrated model for energy rating certification in Victoria. © 2014, The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), Hong Kong.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Smart water metering technologies for residential buildings offer, in principle, great opportunities for sustainable urban water management. However, much of this potential is as yet unrealized. Despite that several ICT solutions have already been deployed aiming at optimum operations on the water utilities side (e.g. real time control for water networks, dynamic pump scheduling etc.), little work has been done to date on the consumer side. This paper presents a web-based platform targeting primarily the household end user. The platform enables consumers to monitor, on a real-time basis, the water demand of their household, providing feedback not only on the total water consumption and relevant costs but also on the efficiency (or otherwise) of specific indoor and outdoor uses. Targeting the reduction of consumption, the provided feedback is combined with notifications about possible leakages\bursts, and customised suggestions to improve the efficiency of existing household uses. It also enables various comparisons, with past consumption or even with that of similar households, aiming to motivate further the householder to become an active player in the water efficiency challenge. The issue of enhancing the platform’s functionality with energy timeseries is also discussed in view of recent advances in smart metering and the concept of “smart cities”. The paper presents a prototype of this web-based application and critically discusses first testing results and insights. It also presents the way in which the platform communicates with central databases, at the water utility level. It is suggested that such developments are closing the gap between technology availability and usefulness to end users and could help both the uptake of smart metering and awareness raising leading, potentially, to significant reductions of urban water consumption. The work has received funding from the European Union FP7 Programme through the iWIDGET Project, under grant agreement no318272.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objeto de estudo desta dissertação é a aplicação de ferramentas para o controle da qualidade e melhoria do processo de produção de uma etapa construtiva de edificações residenciais. As ferramentas aplicadas são: i) controle estatístico do processo – CEP, e; ii) dispositivos Poka-Yoke. A etapa construtiva mencionada é a elevação da estrutura de concreto armado. O estudo foi motivado pela necessidade de melhorar o sistema de manufatura de uma empresa construtora de Porto Alegre – RS, com vistas a reduzir o tempo de construção de suas edificações (lead-time de produção). Para tanto, a partir de conceitos teóricos do Sistema Toyota de Produção – STP, analisou-se o processo produtivo atual para a referida etapa construtiva, identificaram-se perdas existentes no processo e foram propostas melhorias. As ferramentas de qualidade CEP e Poka-Yoke enquadram-se dentro dessa perspectiva de melhoria. Através da sua aplicação, pretende-se eliminar algumas das perdas existentes no processo de construção melhorando sua produtividade e a qualidade do produto final. A aplicação do CEP tem como objetivo avaliar a capacidade do fornecedor de concreto de atender às exigências dos consumidores, de acordo com o que é estipulado pelas normas brasileiras de fabricação e aceitação de concreto, sem impor-lhes ônus desnecessário. A avaliação é efetuada através do monitoramento da variabilidade da propriedade que melhor caracteriza a qualidade do concreto, qual seja, a sua resistência à compressão axial. Os dispositivos Poka-Yoke, por sua vez, são aplicados com funções de controle da qualidade e prevenção de defeitos e, como ferramentas auxiliares na melhoria de atividades produtivas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays, evaluation methods to measure thermal performance of buildings have been developed in order to improve thermal comfort in buildings and reduce the use of energy with active cooling and heating systems. However, in developed countries, the criteria used in rating systems to asses the thermal and energy performance of buildings have demonstrated some limitations when applied to naturally ventilated building in tropical climates. The present research has as its main objective to propose a method to evaluate the thermal performance of low-rise residential buildings in warm humid climates, through computational simulation. The method was developed in order to conceive a suitable rating system for the athermal performance assessment of such buildings using as criteria the indoor air temperature and a thermal comfort adaptive model. The research made use of the software VisualDOE 4.1 in two simulations runs of a base case modeled for two basic types of occupancies: living room and bedroom. In the first simulation run, sensitive analyses were made to identify the variables with the higher impact over the cases´ thermal performance. Besides that, the results also allowed the formulation of design recommendations to warm humid climates toward an improvement on the thermal performance of residential building in similar situations. The results of the second simulation run was used to identify the named Thermal Performance Spectrum (TPS) of both occupancies types, which reflect the variations on the thermal performance considering the local climate, building typology, chosen construction material and studied occupancies. This analysis generates an index named IDTR Thermal Performance Resultant Index, which was configured as a thermal performance rating system. It correlates the thermal performance with the number of hours that the indoor air temperature was on each of the six thermal comfort bands pre-defined that received weights to measure the discomfort intensity. The use of this rating system showed to be appropriated when used in one of the simulated cases, presenting advantages in relation to other evaluation methods and becoming a tool for the understanding of building thermal behavior