935 resultados para reproductive characters
Resumo:
The relationships between reproductive condition, level of reproductive investment and adrenocortical modulation to capture stress in marine turtles form the basis of this study. When subjected to either capture or ecological stressors, nesting marine turtles have demonstrated adrenocortical responses that are both small in magnitude, and slow in responsiveness. These observations were further investigated to determine whether this minimal stress response was a physiological strategy to maximize reproductive investment in adult green Chelonia mydas and hawksbill Eretmochelys imbricata turtles. Female green and hawksbill turtles exhibited a decrease in adrenocortical responsiveness with progressive reproductive condition. Breeding turtles exhibited most suppression of their adrenocortical response to capture compared to both non-breeding and pre-breeding female counterparts. Nesting green turtles maintained a suppressed adrenocortical response to capture throughout the nesting season despite decreased reproductive investment. In contrast, male green and hawksbill turtles were less able to modulate their corticosterone (B) response to acute capture stress. During breeding, male turtles possessed significantly greater adrenocortical responses to capture than females. These results could indicate that the large reproductive investment necessary for female marine turtle reproduction might underlie the marked decrease in adrenocortical responsiveness. This hormonal mechanism could function as one strategy by which female marine turtles maximize their current reproductive event, even though under certain situations this mechanism could entail costs to female survival.
Resumo:
The spawning patterns of two penaeid prawns, Metapenaeus endeavouri (Schmitt) and M. ensis (De Haan), were examined from data collected at 45 stations between March 1986 and March 1992. An index of population fecundity based on the abundance, proportion and fecundity of sexually mature females was used as a measure of spawning output of the prawn stock. The population fecundity index for M. ensis was higher than that for M. endeavouri. The monthly population fecundity index for M. endeavouri varied markedly among years, while that for M. ensis was consistent among years. Spawning of M. endeavouri occurred year-round, while that of M. ensis was concentrated mainly in spring (September to November). For M. endeavouri, a minor spawning, derived from a relatively small number of summer spawners, occurred in the 20 to 30 m offshore waters in summer. In early summer (after May), the major spawning group consisted of large females from the winter-spawning cohort, and the spawning area shifted to depths of 30 to 60 m. In winter (July), the major spawning, derived from the winter-spawning cohort, occurred at depths of 20 to 40 m. For M. ensis, the major spawning, derived from the spring-spawning cohort, was observed in depths < 50 m and was concentrated particularly in inshore waters ( 50 m). These results suggest that mature female M. endeavouri and M. ensis move offshore (>40 m) by May and July, respectively, and return to shallow waters (
Resumo:
Forty-five Large White gilts were used to study the effect of energy intake from 28 to 176 d of age on body composition and reproductive development. From 28 to 60 d, the gilts were fed ad libitum a 16.6 MJ DE/kg, 24% crude protein and 1.3% total lysine diet. From 61 d of age three dietary treatments were used; 1) ad libitum access to feed (15.6 MJ DE/kg, 21% crude protein and 1.07% total lysine) (H), 2) feed offered at 75% (M) of the previous days intake of H, and 3) feed offered at 60% (L) of the previous days intake of H. ADG from 61 to 176 d of age was (p <0.05) affected by treatment. Although live weight at 176 d of age did not differ (p >0.1) the H gilts had higher (p <0.08) carcass weights than the M or L gilts. Back fat depths were similar (p >0.1) for all treatments at 115 d of age, however by 176 d of age M and H gilts were fatter (p <0.1) than L gilts. The mean lipid deposition (LD) from 115 to 176 d of age for L gilts (78.9 g/d) was less (p <0.05) than for M gilts (143.6 g/d) and H gilts (135.6 g/d). There were no differences between treatments for protein deposition (PD) over the same period. More (p <0.05) H gilts (n=8) attained puberty (first observed estrus) than either M gilts or L gilts (n=4 for both). Follicle numbers were similar (p >0.1) across treatments. For gilts that attained puberty, H gilts had fewer (p <0.05) follicles (13.5) than M gilts (19.7) and L gilts (21.3). For gilts with follicular development, H gilts had the heaviest (458.7 g) reproductive tract weight (RTW). However, for those that attained puberty, L gilts had the heaviest RTW. RTW were lowest for those with no follicular development. Energy restriction had a negative impact on puberty attainment, i.e. it took longer to reach puberty. However, for gilts that attained puberty, the number of follicles was greater for those on lower feed intakes. It would appear that rate of fat deposition, but not necessarily the total amount of fat, plays an important role in puberty attainment.
Resumo:
The interaction between natural and sexual selection is central to many theories of how mate choice and reproductive isolation evolve, but their joint effect on the evolution of mate recognition has not, to my knowledge, been investigated in an evolutionary experiment. Natural and sexual selection were manipulated in interspecific hybrid populations of Drosophila to determine their effects on the evolution of a mate recognition system comprised of cuticular hydrocarbons (CHCs). The effect of natural selection in isolation indicated that CHCs were costly for males and females to produce. The effect of sexual selection in isolation indicated that females preferred males with a particular CHC composition. However, the interaction between natural and sexual selection had a greater effect on the evolution of the mate recognition system than either process in isolation. When natural and sexual selection were permitted to operate in combination, male CHCs became exaggerated to a greater extent than in the presence of sexual selection alone, and female CHCs evolved against the direction of natural selection. This experiment demonstrated that the interaction between natural and sexual selection is critical in determining the direction and magnitude of the evolutionary response of the mate recognition system.
Resumo:
Canola (Brassica napus L.) and sunflower (Helianthus annuus L.), two important oilseed crops, are sensitive to low boron (B) supply. Symptoms of B deficiency are often more severe during the reproductive stage, but it is not known if this is due to a decreased external B supply with time or an increased sensitivity to low B during this stage. Canola and sunflower were grown for 75 days after transplanting (DAT) in two solution culture experiments using Amberlite (IRA-743) B-specific resin to maintain constant B concentration in solution over the range 0.6 - 53 muM. Initially, the vegetative growth of both crops was good in all treatments. With the onset of the reproductive stage, however, severe B deficiency symptoms developed and growth of canola and sunflower was reduced with less than or equal to 0.9 and less than or equal to 0.7 muM B, respectively. At these concentrations, reproductive parts failed to develop. The critical B concentration (i.e. 90% of maximum shoot dry matter yield) in the youngest opened leaf was 18 mg kg(-1) in canola and 25 mg kg(-1) in sunflower at 75 DAT. The results of this study indicate that the reproductive stage of these two oilseed crops is more sensitive than the vegetative stage to low B supply.
Resumo:
Objective To evaluate the effect of periparturient disease accompanied by vulval discharge, and weaning-to-mating intervals, on sow fertility and litter size. Design Reproductive data were collected and analysed from 19 Hungarian swine herds over a 4 year period. Conception rates, farrowing rates and litter sizes of sows with periparturient disease accompanied by vulval discharge were used to evaluate the relationship between duration of vulval discharge and subsequent fertility and litter size. The possibility of interactions between weaning-to-mating intervals and duration of vulval discharges was investigated to determine if there was any effect on subsequent fertility and litter size. Results and conclusions Both parity 1 and parity 2 to 8 sows having had periparturient disease accompanied by vulval discharge in excess of 6 days duration had significantly (P < 0.001) lower subsequent fertility (conception, farrowing and adjusted farrowing rates) compared with sows of similar parity where the duration of vulval discharge was < 4 or 4 to 6 days. There was no difference in fertility rates between sows, in both parity categories, with vulval discharge for < 4 days compared with 4 to 6 days. A duration of vulval discharge in excess of 6 days in parity 1 sows significantly reduced litter size (total born and live-born) in subsequent farrowings, but not in parity 2 to 8 sows. There was no interaction between the duration of vulval discharge and post-weaning to mating intervals. However sows with weaning to mating intervals between 7 and 10 days had smaller (P < 0.001) subsequent litter sizes compared with 3 to 6 or 11 to 14 day intervals. It was concluded that the duration of vulval discharge in excess of 6 days was an indication of a severe persistent endometritis adversely affecting fertility of sows.
Resumo:
With over 80 000 described species, Brachycera represent one of the most diverse clades of organisms with a Mesozoic origin. Larvae of the majority of early lineages are detritivores or carnivores. However, Brachycera are ecologically innovative and they now employ a diverse range of feeding strategies. Brachyceran relationships have been the subject of numerous qualitative analyses using morphological characters. These analyses are often based on characters from one or a few character systems and general agreement on relationships has been elusive. In order to understand the evolution of basal brachyceran lineages, 101 discrete morphological characters were scored and compiled into a single data set. Terminals were scored at the family level, and the data set includes characters from larvae, pupae and adults, internal and external morphology, and male and female terminalia. The results show that all infraorders of Brachycera are monophyletic, but there is little evidence for relationships between the infraorders. Stratiomyomorpha, Tabanomorpha, and Xylophagomorpha together form the sister group to Muscomorpha. Xylophagomorpha and Tabanomorpha are sister groups. Within Muscomorpha, the paraphyletic Nemestrinoidea form the two most basal lineages. There is weak evidence for the monophyly of Asiloidea, and Hilarimorphidae appear to be more closely related to Eremoneura than other muscomorphs. Apsilocephalidae, Scenopinidae and Therevidae form a clade of Asiloidea. This phylogenetic evidence is consistent with the contemporaneous differentiation of the main brachyceran lineages in the early Jurassic. The first major radiation of Muscomorpha were asiloids and they may have diversified in response to the radiation of angiosperms in the early Cretaceous.
Resumo:
The eastern shovelnose ray, Aptychotrema rostrata (Rhinobatidae), is an endemic batoid common to the east coast of Australia. The reproductive cycle was studied in Moreton Bay, south-eastern Queensland, over a 14-month period. Aptychotrema rostrata is an aplacental yolksac viviparous species with an annual, seasonal reproductive cycle in Moreton Bay. Females mature at 54-66 cm total length, and males at 60-68 cm total length. Gravid females were observed during September-November and parturition occurred in November-December. Vitellogenesis does not proceed in parallel with gestation. Ovulation and copulation probably occur during July-September, resulting in a gestational period of 3-5 months. Uterine fecundity ranges from 4 to 18, with a significant positive relationship between uterine fecundity and maternal body length. In mature males, a peak in the proportion of mature spermatocysts in the testes was observed in July, whereas gonadosomatic index peaked in April.
Resumo:
We collected data on plasma levels of testosterone+5a-dihydrotestosterone (T+DHT) and corticosterone (CORT) from adult female green sea turtles (Chelonia mydas) from southern Queensland during distinct stages of their reproductive cycle. Those females capable of breeding in a given year had elevated plasma steroid levels (T+DHT 0.91 +/- 0.08; CORT 1.05 +/- 0.29 ng/ml), associated with follicular development, until courtship began in October. At the beginning of the nesting season in November plasma levels of 2 CORT were related to when the female first nested (r(2) = 0.06; F = 10.45; P = 0.01). However, they were not correlated with the number of clutches a female laid in that season (F = 3.65; P = 0.08). We repeatedly sampled 23 turtles over the nesting season and profiled changes in steroids immediately following oviposition of each clutch. Levels of T+DHT (range 0.41-0.58 ng/ml) and CORT (range 2.13-2.81 ng/ml) were similar through the early stages of the nesting season and inter-nesting period, and declined to near basal levels (T+DHT 0.37 +/- 0.03 and CORT 1.85 +/- ng/ml) following the last clutch for the season. Steroid hormone levels were also low (T+DHT 0.38 +/- 0.16; CORT 0.46 +/- 0.21 ng/ml) in four independent post-breeding (atretic) females; samples for these females were taken at a time when body condition was presumably at the lowest for the season. Subtle changes in the nesting environment, such as variation in nesting habitat or the time of night that nesting occurred, were associated with a small and slow CORT increase. We suggest CORT is increased in nesting females to assist in lipid transfer to prepare the ovarian follicles and/or the reproductive organs for ovulation.
Resumo:
The phylogeny of representative haemozoan species of the phylum Apicomplexa was reconstructed by cladistic analyses of ultrastructural and life-cycle characteristics. The analysis incorporated 4 apicomplexans previously not included in phylogenetic reconstructions: Haemogregarina clelandi from the Brisbane River tortoise (Emydura signata), Hepatozoon sp. from the slaty grey snake (Stegonotus cucullatus), Hepatozoon (Haemogregarina) boigae from the brown tree snake (Boiga irregularis), and Haemoproteus chelodina from the saw-shelled tortoise (Elseya latisternum). There was no apparent correlation between parasite phylogeny and that of their vertebrate hosts, but there appeared to be some relationship between parasites and their intermediate hosts, suggestive of parasite/vector co-evolution.
Resumo:
Low temperature during panicle development in rice increases spikelet sterility. This effect is exacerbated by high rates of nitrogen (N) application in the field. Spikelet sterility induced by low temperature and N fertilisation was examined in glasshouse experiments to clarify the mechanisms involved. In two glasshouse experiments, 12-h periods of low (18/13degreesC) and high (28/23degreesC) day/night temperatures were imposed over periods of 5-7 days during panicle development, to determine the effects of low temperature and N fertilisation on spikelet sterility. In one experiment, 50% sunlight was imposed together with low temperature to investigate the additive effects of reduced solar radiation and low temperature. The effect of increased tillering due to N fertilisation was examined by a tiller removal treatment in the same experiment. Pollen grain number and spikelet sterility were recorded at heading and harvest, respectively. Although there was no significant effect of low temperature on spikelet sterility in the absence of applied N, low temperature greatly increased spikelet sterility as a result of a reduction in the number of engorged pollen grains per anther in the presence of applied N. Spikelet sterility was strongly correlated with the number of engorged pollen grains per anther. Low temperature during very early ( late stage of spikelet differentiation-pollen mother cell stage) and peak ( second meiotic division stage-early stage of extine formation) microspore development caused a severe reduction in engorged pollen production mainly as a result of reduced total pollen production. Unlike low temperature, the effect of shading was rather small. The increased tillering due to application of high rates of N, increased both spikelet number per plant and spikelet sterility under low temperature conditions. The removal of tillers as they appeared reduced the number of total spikelets per plant and maintained a large number of engorged pollen grains per anther which, in turn, reduced spikelet sterility. The number of engorged pollen grains per anther determined the numbers of intercepted and germinated pollen grains on the stigma. It is concluded that N increased tillering and spikelet number per plant and this, in turn, reduced the number of engorged pollen grains per anther, leading into increased spikelet sterility under low temperature condition.