901 resultados para repair of blood waves


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is a study of nonlinear phenomena in the propagation of electromagnetic waves in a weakly ionized gas externally biased with a magnetostatic field. The present study is restricted to the nonlinear phenomena rising from the interaction of electromagnetic waves in the ionized gas. The important effects of nonlinearity are wave-form distortion leads to cross modulation of one wave by a second amplitude-modulated wave.

The nonlinear effects are assumed to be small so that a perturbation method can be used. Boltzmann’s kinetic equation with an appropriate expression for the collision term is solved by expanding the electron distribution function into spherical harmonics in velocity space. In turn, the electron convection current density and the conductivity tensors of the nonlinear ionized gas are found from the distribution function. Finally, the expression for the current density and Maxwell’s equations are employed to investigate the effects of nonlinearity on the propagation of electromagnetic waves in the ionized gas, and also on the reflection of waves from an ionized gas of semi-infinite extent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is concerned with some of the properties of roll waves that develop naturally from a turbulent uniform flow in a wide rectangular channel on a constant steep slope . The wave properties considered were depth at the wave crest, depth at the wave trough, wave period, and wave velocity . The primary focus was on the mean values and standard deviations of the crest depths and wave periods at a given station and how these quantities varied with distance along the channel.

The wave properties were measured in a laboratory channel in which roll waves developed naturally from a uniform flow . The Froude number F (F = un/√ghn, un = normal velocity , hn = normal depth, g =acceleration of gravity) ranged from 3. 4 to 6. 0 for channel slopes So of . 05 and . 12 respectively . In the initial phase of their development the roll waves appeared as small amplitude waves with a continuous water surface profile . These small amplitude waves subsequently developed into large amplitude shock waves. Shock waves were found to overtake and combine with other shock waves with the result that the crest depth of the combined wave was larger than the crest depths before the overtake. Once roll waves began to develop, the mean value of the crest depths hnmax increased with distance . Once the shock waves began to overtake, the mean wave period Tav increased approximately linearly with distance.

For a given Froude number and channel slope the observed quantities h-max/hn , T' (T' = So Tav √g/hn), and the standard deviations of h-max/hn and T', could be expressed as unique functions of l/hn (l = distance from beginning of channel) for the two-fold change in hn occurring in the observed flows . A given value of h-max/hn occurred at smaller values of l/hn as the Froude number was increased. For a given value of h /hh-max/hn the growth rate of δh-max/h-maxδl of the shock waves increased as the Froude number was increased.

A laboratory channel was also used to measure the wave properties of periodic permanent roll waves. For a given Froude number and channel slope the h-max/hn vs. T' relation did not agree with a theory in which the weight of the shock front was neglected. After the theory was modified to include this weight, the observed values of h-max/hn were within an average of 6.5 percent of the predicted values, and the maximum discrepancy was 13.5 percent.

For h-max/hn sufficiently large (h-max/hn > approximately 1.5) it was found that the h-max/hn vs. T' relation for natural roll waves was practically identical to the h-max/hn vs. T' relation for periodic permanent roll waves at the same Froude number and slope. As a result of this correspondence between periodic and natural roll waves, the growth rate δh-max/h-maxδl of shock waves was predicted to depend on the channel slope, and this slope dependence was observed in the experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large array has been used to investigate the P-wave velocity structure of the lower mantle. Linear array processing methods are reviewed and a method of nonlinear processing is presented. Phase velocities, travel times, and relative amplitudes of P waves have been measured with the large array at the Tonto Forest Seismological Observatory in Arizona for 125 earthquakes in the distance range of 30 to 100 degrees. Various models are assumed for the upper 771 km of the mantle and the Wiechert-Herglotz method applied to the phase velocity data to obtain a velocity depth structure for the lower mantle. The phase velocity data indicates the presence of a second-order discontinuity at a depth of 840 km, another at 1150 km, and less pronounced discontinuities at 1320, 1700 and 1950 km. Phase velocities beyond 85 degrees are interpreted in terms of a triplication of the phase velocity curve, and this results in a zone of almost constant velocity between depths of 2670 and 2800 km. Because of the uncertainty in the upper mantle assumptions, a final model cannot be proposed, but it appears that the lower mantle is more complicated than the standard models and there is good evidence for second-order discontinuities below a depth of 1000 km. A tentative lower bound of 2881 km can be placed on the depth to the core. The importance of checking the calculated velocity structure against independently measured travel times is pointed out. Comparisons are also made with observed PcP times and the agreement is good. The method of using measured values of the rate of change of amplitude with distances shows promising results.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.