995 resultados para renal excretion
Resumo:
The diuretic and natriuretic responses to exogenous synthetic atrial natriuretic peptide (ANP) were evaluated in patients with chronic renal failure (CRF) or nephrotic syndrome (NS). Patients were studied after an oral water load (8 ml/kg in CRF and 20 ml/kg in NS patients). A short intravenous bolus of either a placebo or ANP was administered when urine output was stable. In each group of patients, three doses of ANP were injected at 24 h intervals, i.e., 1.0, 1.5, and 2.0 micrograms/kg in the CRF and 1.0, 1.5, and 3.0 micrograms/kg in the NS group. Blood pressure and heart rate were monitored throughout the study and urinary volume and electrolyte excretion were measured every 20 min up to 3 h after the bolus. An acute and transient fall in blood pressure was observed immediately after the ANP injection. It was more pronounced in CRF than in NS patients. In CRF patients, ANP caused only a slight increase in urinary volume (13.5-44% over baseline) but a significant increase in urinary sodium excretion (45-114% over baseline). In NS patients, significant increases in both urine volume (60-105%) and sodium excretion (149-248%) were also found. In these latter patients, the renal response to ANP appeared to be better preserved. The hemodynamic and renal changes induced by ANP occurred mainly during the first 20 min following the ANP administration, when the peak plasma ANP levels were obtained. However, no clear dose-response effect could be evidenced in either group with the three doses of ANP chosen in this study.
Resumo:
BACKGROUND: Indomethacin therapy for closure of a patent ductus arteriosus in preterm neonates is responsible for transient renal insufficiency. Dopamine theoretically reduces the renal side effects of indomethacin therapy. PATIENTS: 33 neonates with a mean gestational age of 28.5 weeks who received indomethacin for treatment of a symptomatic PDA were included in a prospective randomized controlled clinical study. METHOD: 15 patients were treated with indomethacin alone (control group), 18 patients with indomethacin and dopamine (study group). Indomethacin was given in a dose of 0.2 mg/kg/dose intravenously, all patients received three doses with intervall of 12 hours. The dose of dopamine was in all patients 4 micrograms/kg per minute commencing 2 hours prior to the first dose of indomethacin and continuing for 12 hours after the third dose. RESULTS: Indomethacin induced a significant increase in serum creatinin (76.3 mumol/l vs 99.7 mumol/l for the control group, and 70.7 mumol/l vs 93.0 mumol/l for the study group), and weight (1259 g vs 1316 g for the control group, and 1187 g vs 1221 g for the study group). The increase systolic blood pressure (61 mmHg vs 65.7 mmHg) in the study group was significant (p < 0.05) but remained unchanged in the control group. The changes between the study group and the control group were not significant either in serum creatinin, fractional excretion of sodium, or weight gain. The failure rate of ductal closure was not different between the two groups. CONCLUSION: The additional use of dopamine does not reduce the renal side effects of indomethacin.
Resumo:
PURPOSE OF REVIEW: Previous studies have shown that a variety of specific renal functions exhibit circadian oscillations. This review aims to provide an update on the molecular mechanisms underlying circadian rhythms in the kidney, and to discuss how dysregulation of circadian rhythms can interfere with kidney function. RECENT FINDINGS: The molecular mechanism responsible for generating and maintaining circadian rhythms has been unraveled in great detail. This mechanism, known as the circadian clock, drives circadian oscillation in expression levels of a large number of renal mRNA transcripts. Several proteins critically involved in renal homeostatic functions have been shown to exhibit significant circadian oscillation in their expression levels or in their posttranslational modifications. In transgenic mouse models, disruption of circadian clock activity results in dramatic changes in the circadian pattern of urinary sodium and potassium excretion and causes significant changes in arterial blood pressure. A growing amount of evidence suggests that dysregulation of circadian rhythms is associated with the development of hypertension and accelerated progression of chronic kidney disease and cardiovascular disease in humans. Chronotherapy studies have shown that the efficacy of antihypertensive medication is greatly dependent on the circadian time of drug administration. SUMMARY: Recent research points to the major role of circadian rhythms in renal function and in control of blood pressure.
Resumo:
Objective: Previous studies reported on the association of left ventricular mass index (LVMI) with urinary sodium or with circulating or urinary aldosterone.We investigated the independent associations of LVMI with the urinary excretion of both sodium and aldosterone. Design and method: We randomly recruited 317 untreated subjects from a White population (45.1%women; mean age 48.2 years).Measurements included echocardiographic left ventricular (LV) properties, the 24 h urinary excretion of sodium and aldosterone, plasma renin activity (PRA), and proximal (RNaprox) and distal (RNadist) renal sodium reabsorption, assessed fromthe endogenous lithium clearance. Inmultivariable-adjusted models,we expressed changes in LVMI per 1 SD increase in the explanatory variables, while accounting for sex, age, systolic blood pressure and the waist-to-hip ratio. Results: LVMI increased independentlywith the urinary excretion of both sodium (+2.48 g/m2; P=0.005) and aldosterone (+2.63 g/m2; P=0.004). Higher sodium excretion was associated with increased mean wall thickness (MWT: +0.126 mm, P=0.054), but with no change in LV end-diastolic diameter (LVID: +0.12mm, P=0.64). In contrast, higher aldosterone excretion was associated with higher LVID (+0.54 mm; P=0.017), but with no change in MWT (+0.070mm; P=0.28).Higher RNadistwas associatedwith lower relativewall thickness (−0.81×10−2, P=0.017), because of opposite trends in LVID(+0.33 mm; P=0.13) and MWT (−0.130mm; P=0.040). LVMI was not associated with PRA or RNaprox. Conclusions: LVMI independently increased with both urinary sodium and aldosterone excretion. IncreasedMWT explained the association of LVMI with urinary sodium and increased LVID the association of LVMI with urinary aldosterone.
Resumo:
OBJECTIVE: The basolateral Na pump drives renotubular reabsorption. In cultured renal cells, mutant adducins, as well as sub-nanomolar ouabain concentrations, stimulate the Na-K pump. METHODS: To determine whether these factors interact and affect Na handling and blood pressure (BP) in vivo, we studied 155 untreated hypertensive patients subdivided on the basis of their plasma endogenous ouabain or alpha-adducin genotype (ADD1 Gly460Trp-rs4961). RESULTS: Under basal conditions, proximal tubular reabsorption and plasma Na were higher in patients with mutated Trp ADD1 or increased endogenous ouabain (P = 0.002 and 0.05, respectively). BPs were higher in the high plasma endogenous ouabain group (P = 0.001). Following volume loading, the increment in BP (7.73 vs. 4.81 mmHg) and the slopes of the relationship between BP and Na excretion were greater [0.017 +/- 0.002 vs. 0.009 +/- 0.003 mmHg/(muEq min)] in ADD1 Trp vs. ADD1 Gly carriers (P < 0.05). BP changes were similar, whereas the slopes of the relationship between BP and Na excretion were lower [0.016 +/- 0.003 vs. 0.008 +/- 0.002 mmHg/(muEq min)] in patients with low vs. high endogenous ouabain (P < 0.05). In patients with high endogenous ouabain, volume loading increased the BP in the ADD1 Trp group but not in the Gly group (P < 0.05). Thus, patients with ADD1 Trp alleles are sensitive to salt and tubular Na reabsorption remains elevated after volume expansion. CONCLUSION: With saline loading, BP changes are similar in high and low endogenous ouabain patients, whereas tubular Na reabsorption increases in the high endogenous ouabain group. Saline loading unmasks differences in renal Na handling in patients with mutant adducin or high endogenous ouabain and exposes an interaction of endogenous ouabain and Trp alleles on BP.
Resumo:
There is an increasing utilisation of oral creatine (Cr) supplementation among athletes who hope to enhance their performance but it is not known if this ingestion has any detrimental effect on the kidney. Five healthy men ingested either a placebo or 20 g of creatine monohydrate per day for 5 consecutive days. Blood samples and urine collections were analysed for Cr and creatinine (Crn) determination after each experimental session. Total protein and albumin urine excretion rates were also determined. Oral Cr supplementation had a significant incremental impact on arterial content (3.7 fold) and urine excretion rate (90 fold) of this compound. In contrast, arterial and urine Crn values were not affected by the Cr ingestion. The glomerular filtration rate (Crn clearance) and the total protein and albumin excretion rates remained within the normal range. In conclusion, this investigation showed that short-term oral Cr supplementation does not appear to have any detrimental effect on the renal responses of healthy men.
Resumo:
AIM: To assess whether blockade of the renin-angiotensin system (RAS), a recognized strategy to prevent the progression of diabetic nephropathy, affects renal tissue oxygenation in type 2 diabetes mellitus (T2DM) patients. METHODS: Prospective randomized 2-way cross over study; T2DM patients with (micro)albuminuria and/or hypertension underwent blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) at baseline, after one month of enalapril (20mgqd), and after one month of candesartan (16mgqd). Each BOLD-MRI was performed before and after the administration of furosemide. The mean R2* (=1/T2*) values in the medulla and cortex were calculated, a low R2* indicating high tissue oxygenation. RESULTS: Twelve patients (mean age: 60±11 years, eGFR: 62±22ml/min/1.73m(2)) completed the study. Neither chronic enalapril nor candesartan intake modified renal cortical or medullary R2* levels. Furosemide significantly decreased cortical and medullary R2* levels suggesting a transient increase in renal oxygenation. Medullary R2* levels correlated positively with urinary sodium excretion and systemic blood pressure, suggesting lower renal oxygenation at higher dietary sodium intake and blood pressure; cortical R2* levels correlated positively with glycemia and HbA1c. CONCLUSION: RAS blockade does not seem to increase renal tissue oxygenation in T2DM hypertensive patients. The response to furosemide and the association with 24h urinary sodium excretion emphasize the crucial role of renal sodium handling as one of the main determinants of renal tissue oxygenation.
Resumo:
Short-term exposure to ambient particulate matter with aerodynamic diameters<10 µm were found to be positively associated with blood pressure. Yet, little information exists regarding the association between particles and circadian rhythm of blood pressure. Hence, we analyzed the association of exposure to particulate matter with aerodynamic diameters<10 µm on the day of examination and ≤7 days before with ambulatory blood pressure and with sodium excretion in 359 adults from the general population using multiple linear regression. After controlling for potential confounders, a 10-µg/m3 increase in particulate matter with aerodynamic diameters<10 µm levels was associated with nighttime systolic blood pressure (β=1.32 mm Hg 95% CI, 0.06-2.58 mm Hg at lag 0; P=0.04), nighttime diastolic blood pressure (0.72 mm Hg 95% CI, 0.03-1.42 mm Hg at lag 2; P=0.04), nocturnal systolic blood pressure dipping (-0.96 mm Hg 95% CI, -1.89 to -0.03 mm Hg at lag 0; P=0.044), and daytime urinary sodium excretion (-0.05 log-mmol/min 95% CI, -0.10 to -0.01 log-mmol/min at lag 0; P=0.027) but not with nighttime sodium excretion. The associations with blood pressure rapidly diminished with increasing lag days, and the associations with daytime sodium excretion were maximal with particulate matter with aerodynamic diameters<10 µm in exposures 2 to 5 days before. The associations of short-term increases in particulate matter with aerodynamic diameters<10 µm with higher nighttime blood pressure and blunted systolic blood pressure dipping were preceded by associations with reduced ability of the kidney to excrete sodium during daytime. The underlying mechanism linking air pollution to increased cardiovascular risk may include disturbed circadian rhythms of renal sodium handling and blood pressure.
Resumo:
Trois agents chélateurs (l?acide diéthylène triamine penta-acétique, DTPA; l?acide méso-2,3- dimercaptosucchique, DMSA; l?acide 2,3-dimercapto- 1 -propanesulfonique, DMPS) ont été comparés quant à leur efficacité à mobiliser du cadmium (Cd) accumulé dans le tissu rénal. Des reins prélevés chez des rats exposés durant 3 j au Cd (acétate de Cd , 0.75 mg/kg.j, i.p) ont été isolés et perfusés in vitro, à l?aide d?un système de reperfusion utilisant une solution de Krebs-Henseleit, pH 7.4, contenant 8 acides aminés et 6% d?albumine. Les concentrations de Cd dans le perfusat et l?urine ont été mesurées par spectrométrie d?absorption atomique. Six périodes de clearance, après une période d?équilibration de 20 min, ont ?été obtenues. Le DMSA et le DMPS ont mobilisé le Cd à partir du tissu rénal, comme l?ont montré les augmentations dose-dépendantes des concentrations de Cd dans l?urine et le perfusat. L?accumulation de Cd était nettement plus élevée dans le perfusat que dans l?urine, indiquant que l?effet des chélateurs se marquait surtout au niveau tubulaire basolatéral. Le DTPA n?induisait qu?une faible mobilisation de Cd dans l?urine et le perfusat, et son efficacité était clairement inférieure à celle des autres chélateurs. Comme prévu, la quantité de Cd présente dans le tissu rénal après perfùsion par le DMSA ou le DMPS diminuait en fonction de l?efficacité des chélateurs, jusqu?à des valeurs inférieures de 46% au taux rénal de Cd avant perfusion. Le DMPS apparaissait induire une excretion urinaire de Cd plus importante que celle induite par le DMSA, une caractéristique qui pourrait être liée à une sécrétion tubulaire du chélateur, qui a été décrite antérieurement. Un intervalle de temps prolongé (1 -2 semaines) entre le moment de l?administration du Cd et la perfusion du rein avec le DMPS induisait une augmentation de l?excrétion urinaire de Cd. Tous les chélateurs se sont montrés néphrotoxiques à concentrations élevées.
Resumo:
Arginine vasopressin (AVP) has a key role in osmoregulation by facilitating water transport in the collecting duct. Recent evidence suggests that AVP may have additional effects on renal function and favor cyst growth in polycystic kidney disease. Whether AVP also affects kidney structure in the general population is unknown. We analyzed the association of copeptin, an established surrogate for AVP, with parameters of renal function and morphology in a multicentric population-based cohort. Participants from families of European ancestry were randomly selected in three Swiss cities. We used linear multilevel regression analysis to explore the association of copeptin with renal function parameters as well as kidney length and the presence of simple renal cysts assessed by ultrasound examination. Copeptin levels were log-transformed. The 529 women and 481 men had median copeptin levels of 3.0 and 5.2 pmol/L, respectively (P<0.001). In multivariable analyses, the copeptin level was associated inversely with eGFR (β=-2.1; 95% confidence interval [95% CI], -3.3 to -0.8; P=0.002) and kidney length (β=-1.2; 95% CI, -1.9 to -0.4; P=0.003) but positively with 24-hour urinary albumin excretion (β=0.11; 95% CI, 0.01 to 0.20; P=0.03) and urine osmolality (β=0.08; 95% CI, 0.05 to 0.10; P<0.001). A positive association was found between the copeptin level and the presence of renal cysts (odds ratio, 1.6; 95% CI, 1.1 to 2.4; P=0.02). These results suggest that AVP has a pleiotropic role in renal function and may favor the development of simple renal cysts.
Resumo:
OBJECTIVE: White coat hypertensive is a pre-hypertensive state that has been associated with increased sympathetic drive. The objective of the study was to compare the exposure of the kidney to sympathetic nerve activity using urinary normetanephrine (UNMN) as a marker of renal sympathetic exposure in white coat hypertensive (WCH) and healthy normotensive (HN) participants. DESIGN AND METHOD: This was a double-blind randomized placebo-controlled crossover study. WCH were included if office blood pressure was >140/80 mmHg and ambulatory blood pressure <135/85 mmHg and HN if OBP was <140/90 mmHg and ABP <135/85 mmHg Participants were randomized to receive either 16 mg of candesartan or a matched placebo for one week before study day. On the study day systemic and renal hemodynamics as well as plasma norepinephrine and urinary excretion of normetanephrine (measured by LC/MS-MS were measured after one hour of baseline, one hour of lower body negative pressure and one hour of recovery period. Excretion of UNMN was expressed as the total of UNMN excreted during these three hours (cumUNMN). Paired or unpaired t-test were used for comparison. RESULTS: 25 HN and 12 WCH participants were included in the study. Mean age (±standard deviation), BMI were respectively 31.0±10.5 years and 22.0 ± 2.2 Kg/m2 in HN and 40.7±17.8 years and 26.7 ± 6.3 Kg/m2 in WCH.Table 1 Baseline mean blood pressure, plasma noradrenaline and cumulated UNMN during placebo and candesartan(Figure is included in full-text article.)Mean blood pressure was higher during placebo and candesartan in WCH compared to HN. Cumulated UNMN was higher in both groups after candesartan treatment. Cumulated UNMN was higher in WCH than in HN only after candesartan treatment. CONCLUSIONS: Urinary excretion of normetanephrine is increased in WCH compared to HN when treated with candesartan. The increased excretion of uNMN when the renin angiotensin system is blocked might reflect an increased sensitivity of WCH to stress conditions such as orthostatic stress.
Resumo:
Free-flow micropuncture was carried out in superficial nephrons of Munich-Wistar type rats infused acutely with Cd acetate (CdA) or Cd-DTPA (141 microM Cd). Fluid obtained from Bowman's space (BS) or end-proximal tubule sites was analyzed for Cd and inulin. The fluid/plasma Cd concentration ratio in BS averaged 0.2 and 1.0 during CdA and Cd-DTPA infusions, respectively. End-proximal tubule fractional excretion of Cd during CdA infusion averaged 0.34. Previous administration of CdA (1.0 mg/kg, 48 hr before micropuncture) increased the level of circulating Cd-metallothioneins, as measured by radioimmunoassay, but did not affect the luminal tubular uptake of Cd during CdA infusion. No net transepithelial movement of Cd-DTPA was measured. It is concluded that Cd ultrafiltered during inorganic Cd administration is taken up to a large extent by the convoluted part of proximal tubules.
Resumo:
Systemic metabolic acidosis is known to cause a decrease in salt and water reabsorption by the kidney. We have used renal lithium clearance to investigate the effect of chronic, NH4Cl-induced metabolic acidosis on the renal handling of Na+ in male Wistar-Hannover rats (200-250 g). Chronic acidosis (pH 7.16 ± 0.13) caused a sustained increase in renal fractional Na+ excretion (267.9 ± 36.4%), accompanied by an increase in fractional proximal (113.3 ± 3.6%) and post-proximal (179.7 ± 20.2%) Na+ and urinary K+ (163.4 ± 5.6%) excretion when compared to control and pair-fed rats. These differences occurred in spite of an unchanged creatinine clearance and Na+ filtered load. A lower final body weight was observed in the acidotic (232 ± 4.6 g) and pair-fed (225 ± 3.6 g) rats compared to the controls (258 ± 3.7 g). In contrast, there was a significant increase in the kidney weights of acidotic rats (1.73 ± 0.05 g) compared to the other experimental groups (control, 1.46 ± 0.05 g; pair-fed, 1.4 ± 0.05 g). We suggest that altered renal Na+ and K+ handling in acidotic rats may result from a reciprocal relationship between the level of metabolism in renal tubules and ion transport.
Resumo:
The role of sympathetic nerve activity in the changes in arterial blood pressure and renal function caused by the chronic administration of NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) synthesis, was examined in sham and bilaterally renal denervated rats. Several studies have demonstrated that sympathetic nerve activity is elevated acutely after L-NAME administration. To evaluate the role of renal nerve activity in L-NAME-induced hypertension, we compared the blood pressure response in four groups (N = 10 each) of male Wistar-Hannover rats weighing 200 to 250 g: 1) sham-operated vehicle-treated, 2) sham-operated L-NAME-treated, 3) denervated vehicle-treated, and 4) denervated L-NAME-treated rats. After renal denervation or sham surgery, one control week was followed by three weeks of oral administration of L-NAME by gavage. Arterial pressure was measured weekly in conscious rats by a tail-cuff method and renal function tests were performed in individual metabolic cages 0, 7, 14 and 21 days after the beginning of L-NAME administration. L-NAME (60 mg kg-1 day-1) progressively increased arterial pressure from 108 ± 6.0 to 149 ± 12 mmHg (P<0.05) in the sham-operated group by the third week of treatment which was accompanied by a fall in creatinine clearance from 336 ± 18 to 222 ± 59 µl min-1 100 g body weight-1 (P<0.05) and a rise in fractional urinary sodium excretion from 0.2 ± 0.04 to 1.62 ± 0.35% (P<0.05) and in sodium post-proximal fractional excretion from 0.54 ± 0.09 to 4.7 ± 0.86% (P<0.05). The development of hypertension was significantly delayed and attenuated in denervated L-NAME-treated rats. This was accompanied by a striking additional increase in fractional renal sodium and potassium excretion from 0.2 ± 0.04 to 4.5 ± 1.6% and from 0.1 ± 0.015 to 1.21 ± 0.37%, respectively, and an enhanced post-proximal sodium excretion compared to the sham-operated group. These differences occurred despite an unchanged creatinine clearance and Na+ filtered load. These results suggest that bilateral renal denervation delayed and attenuated the L-NAME-induced hypertension by promoting an additional decrease in tubule sodium reabsorption in the post-proximal segments of nephrons. Much of the hypertension caused by chronic NO synthesis inhibition is thus dependent on renal nerve activity.
Resumo:
Normal aging is accompanied by renal functional and morphological deterioration and dietetic manipulation has been used to delay this age-related decline. We examined the effects of chronic administration of diets containing 5% lipid-enriched diet (LD, w/w) on renal function of rats at different ages. Three types of LD were tested: canola oil, fish oil and butter. Mean systemic tail-cuff blood pressure and glycemia remained within the normal range whatever the age and the diet of the animals. Proteinuria began to rise from the 8th month in the groups ingesting LD, while in the control group it increased significantly (above 10 mg/24 h) only after the 10th month. With age, a significant and progressive decline in glomerular filtration rate (GFR) and renal plasma flow was observed in the LD groups but after 6 months of lipid supplementation, the decline in these parameters was more marked in the butter and fish oil groups. By the 18th month, the lowest GFR level was observed in the group ingesting the butter diet (2.93 ± 0.22 vs 5.01 ± 0.21 ml min-1 kg-1 in control, P<0.05). Net acid excretion, evaluated in 9- and 18-month-old rats, was stimulated in the fish oil group when compared both to control and to the other two LD groups. These results suggest that even low levels of LD in a chronic nutritional regimen can modify the age-related changes in renal function and that the impact of different types of lipid-supplemented diets on renal function depends on the kind of lipid present in the diet.