115 resultados para reflectometry
Resumo:
The development of TDR for measurement of soil water content and electrical conductivity has resulted in a large shift in measurement methods for a breadth of soil and hydrological characterization efforts. TDR has also opened new possibilities for soil and plant research. Five examples show how TDR has enhanced our ability to conduct our soil- and plant-water research. (i) Oxygen is necessary for healthy root growth and plant development but quantitative evaluation of the factors controlling oxygen supply in soil depends on knowledge of the soil water content by TDR. With water content information we have modeled successfully some impact of tillage methods on oxygen supply to roots and their growth response. (ii) For field assessment of soil mechanical properties influencing crop growth, water content capability was added to two portable soil strength measuring devices; (a) A TDT (Time Domain Transmittivity)-equipped soil cone penetrometer was used to evaluate seasonal soil strengthwater content relationships. In conventional tillage systems the relationships are dynamic and achieve the more stable no-tillage relationships only relatively late in each growing season; (b) A small TDR transmission line was added to a modified sheargraph that allowed shear strength and water content to be measured simultaneously on the same sample. In addition, the conventional graphing procedure for data acquisition was converted to datalogging using strain gauges. Data acquisition rate was improved by more than a factor of three with improved data quality. (iii) How do drought tolerant plants maintain leaf water content? Non-destructive measurement of TDR water content using a flat serpentine triple wire transmission line replaces more lengthy procedures of measuring relative water content. Two challenges remain: drought-stressed leaves alter salt content, changing electrical conductivity, and drought induced changes in leaf morphology affect TDR measurements. (iv) Remote radar signals are reflected from within the first 2 cm of soil. Appropriate calibration of radar imaging for soil water content can be achieved by a parallel pair of blades separated by 8 cm, reaching 1.7 cm into soil and forming a 20 cm TDR transmission line. The correlation between apparent relative permittivity from TDR and synthetic aperture radar (SAR) backscatter coefficient was 0.57 from an airborne flyover. These five examples highlight the diversity in the application of TDR in soil and plant research.
Resumo:
PURPOSE: To demonstrate the application of low-coherence reflectometry to the study of biometric changes during disaccommodation responses in human eyes after cessation of a near task and to evaluate the effect of contact lenses on low-coherence reflectometry biometric measurements. METHODS: Ocular biometric parameters of crystalline lens thickness (LT) and anterior chamber depth (ACD) were measured with the LenStar device during and immediately after a 5 D accommodative task in 10 participants. In a separate trial, accommodation responses were recorded with a Shin-Nippon WAM-5500 optometer in a subset of two participants. Biometric data were interleaved to form a profile of post-task anterior segment changes. In a further experiment, the effect of soft contact lenses on LenStar measurements was evaluated in 15 participants. RESULTS: In 10 adult participants, increased LT and reduced ACD was seen during the 5 D task. Post-task, during fixation of a 0 D target, a profile of the change in LT and ACD against time was observed. In the two participants with accommodation data (one a sufferer of nearwork-induced transient myopia and other a non-sufferer), the post-task changes in refraction compared favorably with the interleaved LenStar biometry data. The insertion of soft contact lenses did not have a significant effect on LenStar measures of ACD or LT (mean change: -0.007 mm, p = 0.265 and + 0.001 mm, p = 0.875, respectively). CONCLUSIONS: With the addition of a relatively simple stimulus modification, the LenStar instrument can be used to produce a profile of post-task changes in LT and ACD. The spatial and temporal resolution of the system is sufficient for the investigation of nearwork-induced transient myopia from a biometric viewpoint. LenStar measurements of ACD and LT remain valid after the fitting of soft contact lenses.
Resumo:
The underlying work to this thesis focused on the exploitation and investigation of photosensitivity mechanisms in optical fibres and planar waveguides for the fabrication of advanced integrated optical devices for telecoms and sensing applications. One major scope is the improvement of grating fabrication specifications by introducing new writing techniques and the use of advanced characterisation methods for grating testing. For the first time the polarisation control method for advanced grating fabrication has successfully been converted to apodised planar waveguide fabrication and the development of a holographic method for the inscription of chirped gratings at arbitrary wavelength is presented. The latter resulted in the fabrication of gratings for pulse-width suppression and wavelength selection in diode lasers. In co-operation with research partners a number of samples were tested using optical frequency domain and optical low coherence reflectometry for a better insight into the limitations of grating writing techniques. Using a variety of different fabrication methods, custom apodised and chirped fibre Bragg gratings were written for the use as filter elements for multiplexer-demultiplexer devices, as well as for short pulse generation and wavelength selection in telecommunication transmission systems. Long period grating based devices in standard, speciality and tapered fibres are presented, showing great potential for multi-parameter sensing. One particular scope is the development of vectorial curvature and refractive index sensors with potential for medical, chemical and biological sensing. In addition the design of an optically tunable Mach-Zehnder based multiwavelength filter is introduced. The discovery of a Type IA grating type through overexposure of hydrogen loaded standard and Boron-Germanium co-doped fibres strengthened the assumption of UV-photosensitivity being a highly non-linear process. Gratings of this type show a significantly lower thermal sensitivity compared to standard gratings, which makes them useful for sensing applications. An Oxford Lasers copper-vapour laser operating at 255 nm in pulsed mode was used for their inscription, in contrast to previous work using CW-Argon-Ion lasers and contributing to differences in the processes of the photorefractive index change
Resumo:
Accommodating Intraocular Lenses (IOLs), multifocal IOLs (MIOLs) and toric IOLs are designed to provide a greater level of spectacle independency post cataract surgery. All of these IOLs are reliant on the accurate calculation of intraocular lens power determined through reliable ocular biometry. A standardised defocus area metric and reading performance index metric were devised for the evaluation of the range of focus and the reading ability of subjects implanted with presbyopic correcting IOLs. The range of clear vision after implantation of an MIOL is extended by a second focal point; however, this results in the prevalence of dysphotopsia. A bespoke halometer was designed and validated to assess this photopic phenomenon. There is a lack of standardisation in the methods used for determining IOL orientation and thus rotation. A repeatable, objective method was developed to allow the accurate assessment of IOL rotation, which was used to determine the rotational and positional stability of a closed loop haptic IOL. A new commercially available biometry device was validated for use with subjects prior to cataract surgery. The optical low coherence reflectometry instrument proved to be a valid method for assessing ocular biometry and covered a wider range of ocular parameters in comparison with previous instruments. The advantages of MIOLs were shown to include an extended range of clear vision translating into greater reading ability. However, an increased prevalence of dysphotopsia was shown with a bespoke halometer, which was dependent on the MIOL optic design. Implantation of a single optic accommodating IOL did not improve reading ability but achieved high subjective ratings of near vision. The closed-loop haptic IOL displayed excellent rotational stability in the late period but relatively poor rotational stability in the early period post implantation. The orientation error was compounded by the high frequency of positional misalignment leading to an extensive overall misalignment of the IOL. This thesis demonstrates the functionality of new IOL lens designs and the importance of standardised testing methods, thus providing a greater understanding of the consequences of implanting these IOLs. Consequently, the findings of the thesis will influence future designs of IOLs and testing methods.
Resumo:
We have used neutron reflectometry to characterize the swelling behaviour of brushes of poly[2-(diethyl amino)ethyl methacrylate], a polybase, as a function of pH. The brushes, synthesized by the "grafting from" method of atom transfer radical polymerization, were observed to approximately double their thickness in low pH solutions, although the pK is shifted to a lower pH than in dilute solution. The composition-depth profile obtained from the reflectometry experiments for the swollen brushes reveals a region depleted in polymer between the substrate and the extended part of the brush.
Resumo:
Progress in the development of actuating molecular devices based on responsive polymers is reviewed. The synthesis and characterization of "grafted from brushes and triblock copolymers is reported. The responsive nature of polyelectrolyte brushes, grown by surface initiated atomic transfer radical polymerization (ATRP), has been characterized by scanning force microscopy, neutron reflectometry, and single molecule force measurements. The molecular response is measured directly for the brushes in terms of both the brush height and composition and the force generated by a single molecule. Triblock copolymers, based on hydrophobic end blocks and polyacid midblock, have been used to produce polymer gels where the deformation of the molecules can be followed directly by small angle Xray scattering (SAXS), and a correlation between molecular shape change and macroscopic deformation has been established. A Landolt pHoscillator, based on bromate/sulfite/ferrocyanide, with a room temperature period of 20 min and a range of 3.1
Resumo:
Progress in the development of generic molecular devices based on responsive polymers is discussed. Characterisation of specially synthesised polyelectrolyte gels, "grafted from" brushes and triblock copolymers is reported. A Landolt pH-oscillator, based on bromate/ sulfite/ferrocyanide, with a room temperature period of 20 min and a range of 3.1
Resumo:
A distributed fiber sensing system based on ultraweak FBGs (UWFBGs) assisted polarization optical time-domain reflectometry (POTDR) is proposed for load and vibration sensing with improved signal-to-noise ratio (SNR) and sensitivity. UWFBGs with reflectivity higher than Rayleigh scattering coefficient per pulse are induced into a POTDR system to increase the intensity of the back signal. The performance improvement of the system has been studied. The numerical analysis has shown that the SNR and sensitivity of the system can be effectively improved by integrating UWFBGs along the whole sensing fiber, which has been clearly proven by the experiment. The experimental results have shown that by using UWFBGs with 1.1 x 10-5 reflectivity and 10-m interval distance, the SNR is improved by 11 dB, and the load and vibration sensitivities of the POTDR are improved by about 10.7 and 9 dB, respectively.
Resumo:
A novel interrogation technique for fully distributed linearly chirped fiber Bragg grating (LCFBG) strain sensors with simultaneous high temporal and spatial resolution based on optical time-stretch frequency-domain reflectometry (OTS-FDR) is proposed and experimentally demonstrated. LCFBGs is a promising candidate for fully distributed sensors thanks to its longer grating length and broader reflection bandwidth compared to normal uniform FBGs. In the proposed system, two identical LCFBGs are employed in a Michelson interferometer setup with one grating serving as the reference grating whereas the other serving as the sensing element. Broadband spectral interferogram is formed and the strain information is encoded into the wavelength-dependent free spectral range (FSR). Ultrafast interrogation is achieved based on dispersion-induced time stretch such that the target spectral interferogram is mapped to a temporal interference waveform that can be captured in real-Time using a single-pixel photodector. The distributed strain along the sensing grating can be reconstructed from the instantaneous RF frequency of the captured waveform. High-spatial resolution is also obtained due to high-speed data acquisition. In a proof-of-concept experiment, ultrafast real-Time interrogation of fully-distributed grating sensors with various strain distributions is experimentally demonstrated. An ultrarapid measurement speed of 50 MHz with a high spatial resolution of 31.5 μm over a gauge length of 25 mm and a strain resolution of 9.1 μϵ have been achieved.
Resumo:
It is an Olympic year and we have just witnessed the fantastic games hosted by Rio de Janeiro. Well done to team USA for winning the most medals overall but also well done to so many other nations and individuals who performed so well or were ambassadors in other ways. Teenage swimmer Yusra Mardini who swam for the refugee team and South Africa's Wayde van Niekerk who broke the longstanding 400 m record of Michael Johnson that has stood since 1999. Of course, we must mention sprinter Usain Bolt and swimmer Michael Phelps, who have now transcended superstar status and entered a new level of icon. My personal highlight was the sportsmanship witnessed in the 5000 m when American Abbey D’Agostino was accidentally felled by New Zealand runner Nikki Hamblin. D’Agostino helped Hamblin back to her feet but slumped to the track after realising her own injury. Hamblin helped her up and stayed with her so that both completed the race. The International Olympic Committee has awarded both with the prestigious Pierre de Coubertin award, also known as the International Fair Play Trophy. Fair play is of paramount importance in publishing in peer-reviewed papers. At CLAE we try and maintain, as do other journals, this by ensuring double blind peer review and allowing authors to select the most appropriate handling editor for their submission. Our handling editors are placed across the world (2 in Europe, 1 in the Americas, 1 in Australia and 1 in Asia) and part of their role is to encourage submissions from their region. Over the last decade we certainly have seen more and more papers from places that haven’t previously published in CLAE. In this issue of CLAE we have a true international blend of papers. We have papers from authors from the UK, USA, Iran, Jordan, France, Poland, Turkey, Nigeria, France, Spain and Brazil. I think it's a testament to the continued success of the journal that we are attracting new writers from so many parts of the world and retain papers from more established authors and research centres. We do continue to attract many weaker papers that are rejected early in the review process. Often these will be unexceptional case reports or papers describing a surgical technique. Case reports are published but only those that offer something original and especially those with interesting photographs. In this issue you will see Professor James Wolffsohn (UK) has an interesting paper around a lot of the focus of his recent research activity into clinical evaluation of methods of correcting presbyopia. In this paper he highlights predictors to aid success of presbyopic contact lenses. If you have been involved in any clinical work or research in the field of dry eye disease then you will know well the CLDEQ (Contact Lens Dry Eye Questionnaire) devised by Robin Chalmers and her colleagues (USA). This issue of CLAE details the latest research using the CLDEQ-8 (the 8 item version of the CLDEQ). The Shahroud Eye Cohort Study has produced many papers already and in this issue we see Fotouhi Akbar (Iran) looking at changes in central and peripheral corneal thickness over a five year period. These days we use a lot of new instrumentation, such as optical low-coherence reflectometry. In this issue Emre Güler (Turkey) compares that to a new optical biometry unit. Dry eye is more common and in this issue we see a study by Oluyemi Fasina (Nigeria) to investigate the disease in adults in South-West Nigeria. The TearLab™ is now commonly used to investigate osmolarity and Dorota Szczesna-Iskander (Poland) looks at measurement variability of this device. Following the theme of dry eyes and tear testing Renaud Laballe (France) looks at the use of scleral lenses as a reservoir-based ocular therapeutic system. In this issue we have a couple of papers looking at different aspects of keratoconus. Magdalena Popiela (UK) looks at demographics of older keratoconic patients in Wales, Faik Orucoglu (Turkey) reports a novel scoring system for distinguishing keratoconus from normal eyes, Gonzalo Carracedo (Spain) reports the effect of rigid gas permeable lens wear on dry eye in keratoconus and Hatice Nur Colak (Turkey) compares topographic and aberrations in keratoconus. Other interesting papers you will find are Mera Haddad (Jordan) investigates contact lens prescribing in Jordan, Camilla Fraga Amaral (Brazil) offers a report on the use of ocular prosthetics, Naveed Ahmed Khan (Malaysia) reports of the use of dimethyl sulfoxide in contact lens disinfectant and Michael Killpartrick (UK) offers a short piece with some useful advice on contamination risk factors that may occur from the posterior surface of disposable lenses. So for this issue I would say that the Gold Medal for biggest contribution in terms of papers has to go to Turkey. I could have awarded it to the UK too, but Turkey has three full papers and the UK has two plus one short communication. Turkey is also one of the countries that has shown the largest increase in submissions over the last decade. Finally, welcome aboard to our newest Editorial Board Member Nicole Carnt from Australia. Nicole has been an active researcher for many years and acted as a reviewer for CLAE many times in the past. We look forward to working with you.