988 resultados para rectangular region models
Resumo:
Cascade is a multi-institution project studying the temporal and spatial organization of tropical convective systems. While cloud resolving numerical models can reproduce the observed diurnal cycle of such systems they are sensitive to the chosen resolution. As part of this effort, we are comparing results from the Met. Office Unified Model to data from the Global Earth Radiation Budget satellite instrument over the African Monsoon Interdisciplinary Analyses region of North Africa. We use a variety of mathematical techniques to study the outgoing radiation and the evolution of properties such as the cloud size distribution. The effectiveness of various model resolutions is tested with a view to determining the optimum balance between resolution and the need to reproduce the observations.
Resumo:
Land use and land cover changes in the Brazilian Amazon have major implications for regional and global carbon (C) cycling. Cattle pasture represents the largest single use (about 70%) of this once-forested land in most of the region. The main objective of this study was to evaluate the accuracy of the RothC and Century models at estimating soil organic C (SOC) changes under forest-to-pasture conditions in the Brazilian Amazon. We used data from 11 site-specific 'forest to pasture' chronosequences with the Century Ecosystem Model (Century 4.0) and the Rothamsted C Model (RothC 26.3). The models predicted that forest clearance and conversion to well managed pasture would cause an initial decline in soil C stocks (0-20 cm depth), followed in the majority of cases by a slow rise to levels exceeding those under native forest. One exception to this pattern was a chronosequence in Suia-Missu, which is under degraded pasture. In three other chronosequences the recovery of soil C under pasture appeared to be only to about the same level as under the previous forest. Statistical tests were applied to determine levels of agreement between simulated SOC stocks and observed stocks for all the sites within the 11 chronosequences. The models also provided reasonable estimates (coefficient of correlation = 0.8) of the microbial biomass C in the 0-10 cm soil layer for three chronosequences, when compared with available measured data. The Century model adequately predicted the magnitude and the overall trend in delta C-13 for the six chronosequences where measured 813 C data were available. This study gave independent tests of model performance, as no adjustments were made to the models to generate outputs. Our results suggest that modelling techniques can be successfully used for monitoring soil C stocks and changes, allowing both the identification of current patterns in the soil and the projection of future conditions. Results were used and discussed not only to evaluate soil C dynamics but also to indicate soil C sequestration opportunities for the Brazilian Amazon region. Moreover, modelling studies in these 'forest to pasture' systems have important applications, for example, the calculation of CO, emissions from land use change in national greenhouse gas inventories. (0 2007 Elsevier B.V. All rights reserved.
Resumo:
RothC and Century are two of the most widely used soil organic matter (SOM) models. However there are few examples of specific parameterisation of these models for environmental conditions in East Africa. The aim of this study was therefore, to evaluate the ability of RothC and the Century to estimate changes in soil organic carbon (SOC) resulting from varying land use/management practices for the climate and soil conditions found in Kenya. The study used climate, soils and crop data from a long term experiment (1976-2001) carried out at The Kabete site at The Kenya National Agricultural Research Laboratories (NARL, located in a semi-humid region) and data from a 13 year experiment carried out in Machang'a (Embu District, located in a semi-arid region). The NARL experiment included various fertiliser (0, 60 and 120 kg of N and P2O5 ha(-1)), farmyard manure (FYM - 5 and 10 t ha(-1)) and plant residue treatments, in a variety of combinations. The Machang'a experiment involved a fertiliser (51 kg N ha(-1)) and a FYM (0, 5 and 10 t ha(-1)) treatment with both monocropping and intercropping. At Kabete both models showed a fair to good fit to measured data, although Century simulations for treatments with high levels of FYM were better than those without. At the Machang'a site with monocrops, both models showed a fair to good fit to measured data for all treatments. However, the fit of both models (especially RothC) to measured data for intercropping treatments at Machang'a was much poorer. Further model development for intercrop systems is recommended. Both models can be useful tools in soil C Predictions, provided time series of measured soil C and crop production data are available for validating model performance against local or regional agricultural crops. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Projections of stratospheric ozone from a suite of chemistry-climate models (CCMs) have been analyzed. In addition to a reference simulation where anthropogenic halogenated ozone depleting substances (ODSs) and greenhouse gases (GHGs) vary with time, sensitivity simulations with either ODS or GHG concentrations fixed at 1960 levels were performed to disaggregate the drivers of projected ozone changes. These simulations were also used to assess the two distinct milestones of ozone returning to historical values (ozone return dates) and ozone no longer being influenced by ODSs (full ozone recovery). The date of ozone returning to historical values does not indicate complete recovery from ODSs in most cases, because GHG-induced changes accelerate or decelerate ozone changes in many regions. In the upper stratosphere where CO2-induced stratospheric cooling increases ozone, full ozone recovery is projected to not likely have occurred by 2100 even though ozone returns to its 1980 or even 1960 levels well before (~2025 and 2040, respectively). In contrast, in the tropical lower stratosphere ozone decreases continuously from 1960 to 2100 due to projected increases in tropical upwelling, while by around 2040 it is already very likely that full recovery from the effects of ODSs has occurred, although ODS concentrations are still elevated by this date. In the midlatitude lower stratosphere the evolution differs from that in the tropics, and rather than a steady decrease in ozone, first a decrease in ozone is simulated from 1960 to 2000, which is then followed by a steady increase through the 21st century. Ozone in the midlatitude lower stratosphere returns to 1980 levels by ~2045 in the Northern Hemisphere (NH) and by ~2055 in the Southern Hemisphere (SH), and full ozone recovery is likely reached by 2100 in both hemispheres. Overall, in all regions except the tropical lower stratosphere, full ozone recovery from ODSs occurs significantly later than the return of total column ozone to its 1980 level. The latest return of total column ozone is projected to occur over Antarctica (~2045–2060) whereas it is not likely that full ozone recovery is reached by the end of the 21st century in this region. Arctic total column ozone is projected to return to 1980 levels well before polar stratospheric halogen loading does so (~2025–2030 for total column ozone, cf. 2050–2070 for Cly+60×Bry) and it is likely that full recovery of total column ozone from the effects of ODSs has occurred by ~2035. In contrast to the Antarctic, by 2100 Arctic total column ozone is projected to be above 1960 levels, but not in the fixed GHG simulation, indicating that climate change plays a significant role.
Resumo:
In this work a method for building multiple-model structures is presented. A clustering algorithm that uses data from the system is employed to define the architecture of the multiple-model, including the size of the region covered by each model, and the number of models. A heating ventilation and air conditioning system is used as a testbed of the proposed method.
Resumo:
In this work a method for building multiple-model structures is presented. A clustering algorithm that uses data from the system is employed to define the architecture of the multiple-model, including the size of the region covered by each model, and the number of models. A heating ventilation and air conditioning system is used as a testbed of the proposed method.
Resumo:
An algorithm based on flux difference splitting is presented for the solution of two-dimensional, open channel flows. A transformation maps a non-rectangular, physical domain into a rectangular one. The governing equations are then the shallow water equations, including terms of slope and friction, in a generalized coordinate system. A regular mesh on a rectangular computational domain can then be employed. The resulting scheme has good jump capturing properties and the advantage of using boundary/body-fitted meshes. The scheme is applied to a problem of flow in a river whose geometry induces a region of supercritical flow.
Resumo:
Laboratory Fourier transform spectroscopy of pure water vapor and water vapor mixed with air has been conducted between 1200 and 8000 cm−1 and at temperatures between 293 and 351 K with the purpose of detecting and characterizing the water vapor continuum. The spectral features of the continuum within the major water absorption bands are presented and compared where possible to those from previous experimental studies and to the commonly used MT_CKD and CKD models. It was observed that in the main, both models adequately capture the general spectral form of the continuum; however, there were a number of exceptions. Overall, there is no evidence to indicate that MT_CKD is an improvement upon the older CKD model in these spectral regions. There was generally good agreement between our results and those of other experimental investigators. The general mathematical forms of the self-continuum temperature dependence, given by both Roberts et al. (1976) and CKD/MT_CKD, fit well to the experimental continuum in these spectral regions. However, the range of temperatures over which we made measurements is not sufficient to discriminate between these two forms or to exclude the possibility of other forms of temperature dependence being more appropriate. At the same time, the actual parameters currently used in CKD/MT_CKD to describe the temperature dependence in many spectral regions cannot reproduce the observed strong spectral variation in the temperature dependence. It has not been possible to make definitive conclusions about the magnitude of the continuum absorption in the far wings of the absorption bands investigated here.
Resumo:
Satellite data are used to quantify and examine the bias in the outgoing long-wave (LW) radiation over North Africa during May–July simulated by a range of climate models and the Met Office global numerical weather prediction (NWP) model. Simulations from an ensemble-mean of multiple climate models overestimate outgoing clear-sky long-wave radiation (LWc) by more than 20 W m−2 relative to observations from Clouds and the Earth's Radiant Energy System (CERES) for May–July 2000 over parts of the west Sahara, and by 9 W m−2 for the North Africa region (20°W–30°E, 10–40°N). Experiments with the atmosphere-only version of the High-resolution Hadley Centre Global Environment Model (HiGEM), suggest that including mineral dust radiative effects removes this bias. Furthermore, only by reducing surface temperature and emissivity by unrealistic amounts is it possible to explain the magnitude of the bias. Comparing simulations from the Met Office NWP model with satellite observations from Geostationary Earth Radiation Budget (GERB) instruments suggests that the model overestimates the LW by 20–40 W m−2 during North African summer. The bias declines over the period 2003–2008, although this is likely to relate to improvements in the model and inhomogeneity in the satellite time series. The bias in LWc coincides with high aerosol dust loading estimated from the Ozone Monitoring Instrument (OMI), including during the GERBILS field campaign (18–28 June 2007) where model overestimates in LWc greater than 20 W m−2 and OMI-estimated aerosol optical depth (AOD) greater than 0.8 are concurrent around 20°N, 0–20°W. A model-minus-GERB LW bias of around 30 W m−2 coincides with high AOD during the period 18–21 June 2007, although differences in cloud cover also impact the model–GERB differences. Copyright © Royal Meteorological Society and Crown Copyright, 2010
Resumo:
The Asian monsoon system, including the western North Pacific (WNP), East Asian, and Indian monsoons, dominates the climate of the Asia-Indian Ocean-Pacific region, and plays a significant role in the global hydrological and energy cycles. The prediction of monsoons and associated climate features is a major challenge in seasonal time scale climate forecast. In this study, a comprehensive assessment of the interannual predictability of the WNP summer climate has been performed using the 1-month lead retrospective forecasts (hindcasts) of five state-of-the-art coupled models from ENSEMBLES for the period of 1960–2005. Spatial distribution of the temporal correlation coefficients shows that the interannual variation of precipitation is well predicted around the Maritime Continent and east of the Philippines. The high skills for the lower-tropospheric circulation and sea surface temperature (SST) spread over almost the whole WNP. These results indicate that the models in general successfully predict the interannual variation of the WNP summer climate. Two typical indices, the WNP summer precipitation index and the WNP lower-tropospheric circulation index (WNPMI), have been used to quantify the forecast skill. The correlation coefficient between five models’ multi-model ensemble (MME) mean prediction and observations for the WNP summer precipitation index reaches 0.66 during 1979–2005 while it is 0.68 for the WNPMI during 1960–2005. The WNPMI-regressed anomalies of lower-tropospheric winds, SSTs and precipitation are similar between observations and MME. Further analysis suggests that prediction reliability of the WNP summer climate mainly arises from the atmosphere–ocean interaction over the tropical Indian and the tropical Pacific Ocean, implying that continuing improvement in the representation of the air–sea interaction over these regions in CGCMs is a key for long-lead seasonal forecast over the WNP and East Asia. On the other hand, the prediction of the WNP summer climate anomalies exhibits a remarkable spread resulted from uncertainty in initial conditions. The summer anomalies related to the prediction spread, including the lower-tropospheric circulation, SST and precipitation anomalies, show a Pacific-Japan or East Asia-Pacific pattern in the meridional direction over the WNP. Our further investigations suggest that the WNPMI prediction spread arises mainly from the internal dynamics in air–sea interaction over the WNP and Indian Ocean, since the local relationships among the anomalous SST, circulation, and precipitation associated with the spread are similar to those associated with the interannual variation of the WNPMI in both observations and MME. However, the magnitudes of these anomalies related to the spread are weaker, ranging from one third to a half of those anomalies associated with the interannual variation of the WNPMI in MME over the tropical Indian Ocean and subtropical WNP. These results further support that the improvement in the representation of the air–sea interaction over the tropical Indian Ocean and subtropical WNP in CGCMs is a key for reducing the prediction spread and for improving the long-lead seasonal forecast over the WNP and East Asia.
Resumo:
We present an intercomparison and verification analysis of 20 GCMs (Global Circulation Models) included in the 4th IPCC assessment report regarding their representation of the hydrological cycle on the Danube river basin for 1961–2000 and for the 2161–2200 SRESA1B scenario runs. The basin-scale properties of the hydrological cycle are computed by spatially integrating the precipitation, evaporation, and runoff fields using the Voronoi-Thiessen tessellation formalism. The span of the model- simulated mean annual water balances is of the same order of magnitude of the observed Danube discharge of the Delta; the true value is within the range simulated by the models. Some land components seem to have deficiencies since there are cases of violation of water conservation when annual means are considered. The overall performance and the degree of agreement of the GCMs are comparable to those of the RCMs (Regional Climate Models) analyzed in a previous work, in spite of the much higher resolution and common nesting of the RCMs. The reanalyses are shown to feature several inconsistencies and cannot be used as a verification benchmark for the hydrological cycle in the Danubian region. In the scenario runs, for basically all models the water balance decreases, whereas its interannual variability increases. Changes in the strength of the hydrological cycle are not consistent among models: it is confirmed that capturing the impact of climate change on the hydrological cycle is not an easy task over land areas. Moreover, in several cases we find that qualitatively different behaviors emerge among the models: the ensemble mean does not represent any sort of average model, and often it falls between the models’ clusters.
Resumo:
Current state-of-the-art climate models fail to capture accurately the path of the Gulf Stream and North Atlantic Current. This leads to a warm bias near the North American coast, where the modelled Gulf Stream separates from the coast further north, and a cold anomaly to the east of the Grand Banks of Newfoundland, where the North Atlantic Current remains too zonal in this region. Using an atmosphere-only model forced with the sea surface temperature (SST) biases in the North Atlantic, we consider the impact they have on the mean state and the variability in the North Atlantic European region in winter. Our results show that the SST errors produce a mean sea-level pressure response that is similar in magnitude and pattern to the atmospheric circulation errors in the coupled climate model. The work also suggests that errors in the coupled model storm tracks and North Atlantic Oscillation, compared to reanalysis data, can also be explained partly by these SST errors. Our results suggest that both the error in the Gulf Stream separation location and the path of the North Atlantic Current around the Grand Banks play important roles in affecting the atmospheric circulation. Reducing these coupled model errors could improve significantly the representation of the large-scale atmospheric circulation of the North Atlantic and European region.
Resumo:
Current variability of precipitation (P) and its response to surface temperature (T) are analysed using coupled(CMIP5) and atmosphere-only (AMIP5) climate model simulations and compared with observational estimates. There is striking agreement between Global Precipitation Climatology Project (GPCP) observed and AMIP5 simulated P anomalies over land both globally and in the tropics suggesting that prescribed sea surface temperature and realistic radiative forcings are sufficient for simulating the interannual variability in continental P. Differences between the observed and simulated P variability over the ocean, originate primarily from the wet tropical regions, in particular the western Pacific, but are reduced slightly after 1995. All datasets show positive responses of P to T globally of around 2 %/K for simulations and 3-4 %/K in GPCP observations but model responses over the tropical oceans are around 3 times smaller than GPCP over the period 1988-2005. The observed anticorrelation between land and ocean P, linked with El Niño Southern Oscillation, is captured by the simulations. All data sets over the tropical ocean show a tendency for wet regions to become wetter and dry regions drier with warming. Over the wet region (75% precipitation percentile), the precipitation response is ~13-15%/K for GPCP and ~5%/K for models while trends in P are 2.4%/decade for GPCP, 0.6% /decade for CMIP5 and 0.9%/decade for AMIP5 suggesting that models are underestimating the precipitation responses or a deficiency exists in the satellite datasets.
Resumo:
[1] Remotely sensed, multiannual data sets of shortwave radiative surface fluxes are now available for assimilation into land surface schemes (LSSs) of climate and/or numerical weather prediction models. The RAMI4PILPS suite of virtual experiments assesses the accuracy and consistency of the radiative transfer formulations that provide the magnitudes of absorbed, reflected, and transmitted shortwave radiative fluxes in LSSs. RAMI4PILPS evaluates models under perfectly controlled experimental conditions in order to eliminate uncertainties arising from an incomplete or erroneous knowledge of the structural, spectral and illumination related canopy characteristics typical for model comparison with in situ observations. More specifically, the shortwave radiation is separated into a visible and near-infrared spectral region, and the quality of the simulated radiative fluxes is evaluated by direct comparison with a 3-D Monte Carlo reference model identified during the third phase of the Radiation transfer Model Intercomparison (RAMI) exercise. The RAMI4PILPS setup thus allows to focus in particular on the numerical accuracy of shortwave radiative transfer formulations and to pinpoint to areas where future model improvements should concentrate. The impact of increasing degrees of structural and spectral subgrid variability on the simulated fluxes is documented and the relevance of any thus emerging biases with respect to gross primary production estimates and shortwave radiative forcings due to snow and fire events are investigated.
Resumo:
An evaluation is undertaken of the statistics of daily precipitation as simulated by five regional climate models using comprehensive observations in the region of the European Alps. Four limited area models and one variable-resolution global model are considered, all with a grid spacing of 50 km. The 15-year integrations were forced from reanalyses and observed sea surface temperature and sea ice (global model from sea surface only). The observational reference is based on 6400 rain gauge records (10–50 stations per grid box). Evaluation statistics encompass mean precipitation, wet-day frequency, precipitation intensity, and quantiles of the frequency distribution. For mean precipitation, the models reproduce the characteristics of the annual cycle and the spatial distribution. The domain mean bias varies between −23% and +3% in winter and between −27% and −5% in summer. Larger errors are found for other statistics. In summer, all models underestimate precipitation intensity (by 16–42%) and there is a too low frequency of heavy events. This bias reflects too dry summer mean conditions in three of the models, while it is partly compensated by too many low-intensity events in the other two models. Similar intermodel differences are found for other European subregions. Interestingly, the model errors are very similar between the two models with the same dynamical core (but different parameterizations) and they differ considerably between the two models with similar parameterizations (but different dynamics). Despite considerable biases, the models reproduce prominent mesoscale features of heavy precipitation, which is a promising result for their use in climate change downscaling over complex topography.