953 resultados para rate-propagation equation
Resumo:
Nonlinear acoustic wave propagation in an infinite rectangular waveguide is investigated. The upper boundary of this waveguide is a nonlinear elastic plate, whereas the lower boundary is rigid. The fluid is assumed to be inviscid with zero mean flow. The focus is restricted to non-planar modes having finite amplitudes. The approximate solution to the acoustic velocity potential of an amplitude modulated pulse is found using the method of multiple scales (MMS) involving both space and time. The calculations are presented up to the third order of the small parameter. It is found that at some frequencies the amplitude modulation is governed by the Nonlinear Schrodinger equation (NLSE). The first objective here is to study the nonlinear term in the NLSE. The sign of the nonlinear term in the NLSE plays a role in determining the stability of the amplitude modulation. Secondly, at other frequencies, the primary pulse interacts with its higher harmonics, as do two or more primary pulses with their resultant higher harmonics. This happens when the phase speeds of the waves match and the objective is to identify the frequencies of such interactions. For both the objectives, asymptotic coupled wavenumber expansions for the linear dispersion relation are required for an intermediate fluid loading. The novelty of this work lies in obtaining the asymptotic expansions and using them for predicting the sign change of the nonlinear term at various frequencies. It is found that when the coupled wavenumbers approach the uncoupled pressure-release wavenumbers, the amplitude modulation is stable. On the other hand, near the rigid-duct wavenumbers, the amplitude modulation is unstable. Also, as a further contribution, these wavenumber expansions are used to identify the frequencies of the higher harmonic interactions. And lastly, the solution for the amplitude modulation derived through the MMS is validated using these asymptotic expansions. (C) 2015 Elsevier Ltd. All rights reserved.
Weakly nonlinear acoustic wave propagation in a nonlinear orthotropic circular cylindrical waveguide
Resumo:
Nonlinear acoustic wave propagation is considered in an infinite orthotropic thin circular cylindrical waveguide. The modes are non-planar having small but finite amplitude. The fluid is assumed to be ideal and inviscid with no mean flow. The cylindrical waveguide is modeled using the Donnell's nonlinear theory for thin cylindrical shells. The approximate solutions for the acoustic velocity potential are found using the method of multiple scales (MMS) in space and time. The calculations are presented up to the third order of the small parameter. It is found that at some frequencies the amplitude modulation is governed by the Nonlinear Schrodinger Equation (NLSE). The first objective is to study the nonlinear term in the NLSE, as the sign of the nonlinear term determines the stability of the amplitude modulation. On the other hand, at other specific frequencies, interactions occur between the primary wave and its higher harmonics. Here, the objective is to identify the frequencies of the higher harmonic interactions. Lastly, the linear terms in the NLSE obtained using the MMS calculations are validated. All three objectives are met using an asymptotic analysis of the dispersion equation. (C) 2015 Acoustical Society of America.
Resumo:
Nanoparticle deposition behavior observed at the Darcy scale represents an average of the processes occurring at the pore scale. Hence, the effect of various pore-scale parameters on nanoparticle deposition can be understood by studying nanoparticle transport at pore scale and upscaling the results to the Darcy scale. In this work, correlation equations for the deposition rate coefficients of nanoparticles in a cylindrical pore are developed as a function of nine pore-scale parameters: the pore radius, nanoparticle radius, mean flow velocity, solution ionic strength, viscosity, temperature, solution dielectric constant, and nanoparticle and collector surface potentials. Based on dominant processes, the pore space is divided into three different regions, namely, bulk, diffusion, and potential regions. Advection-diffusion equations for nanoparticle transport are prescribed for the bulk and diffusion regions, while the interaction between the diffusion and potential regions is included as a boundary condition. This interaction is modeled as a first-order reversible kinetic adsorption. The expressions for the mass transfer rate coefficients between the diffusion and the potential regions are derived in terms of the interaction energy profile. Among other effects, we account for nanoparticle-collector interaction forces on nanoparticle deposition. The resulting equations are solved numerically for a range of values of pore-scale parameters. The nanoparticle concentration profile obtained for the cylindrical pore is averaged over a moving averaging volume within the pore in order to get the 1-D concentration field. The latter is fitted to the 1-D advection-dispersion equation with an equilibrium or kinetic adsorption model to determine the values of the average deposition rate coefficients. In this study, pore-scale simulations are performed for three values of Peclet number, Pe = 0.05, 5, and 50. We find that under unfavorable conditions, the nanoparticle deposition at pore scale is best described by an equilibrium model at low Peclet numbers (Pe = 0.05) and by a kinetic model at high Peclet numbers (Pe = 50). But, at an intermediate Pe (e.g., near Pe = 5), both equilibrium and kinetic models fit the 1-D concentration field. Correlation equations for the pore-averaged nanoparticle deposition rate coefficients under unfavorable conditions are derived by performing a multiple-linear regression analysis between the estimated deposition rate coefficients for a single pore and various pore-scale parameters. The correlation equations, which follow a power law relation with nine pore-scale parameters, are found to be consistent with the column-scale and pore-scale experimental results, and qualitatively agree with the colloid filtration theory. These equations can be incorporated into pore network models to study the effect of pore-scale parameters on nanoparticle deposition at larger length scales such as Darcy scale.
Resumo:
In this paper, we study nonlinear Kramers problem by investigating overdamped systems ruled by the one-dimensional nonlinear Fokker-Planck equation. We obtain an analytic expression for the Kramers escape rate under quasistationary conditions by employing
Resumo:
The gradient elastic constitutive equation incorporating the second gradient of the strains is used to determine the monochromatic elastic plane wave propagation in a gradient infinite medium and thin rod. The equation of motion, together with the internal material length, has been derived. Various dispersion relations have been determined. We present explicit expressions for the relationship between various wave speeds, wavenumber and internal material length.
Resumo:
To investigate the low temperature fatigue crack propagation behavior of offshore structural steel A131 under random ice loading, three ice failure modes that are commonly present in the Bohai Gulf are simulated according to the vibration stress responses induced by real ice loading. The test data are processed by a universal software FCPUSL developed on the basis of the theory of fatigue crack propagation and statistics. The fundamental parameter controlling the fatigue crack propagation induced by random ice loading is determined to be the amplitude root mean square stress intensity factor K-arm. The test results are presented on the crack propagation diagram where the crack growth rate da/dN is described as the function of K-arm. It is evident that the ice failure modes have great influence on the fatigue crack propagation behavior of the steel in ice-induced vibration. However, some of the experimental phenomena and test results are hard to be physically explained at present. The work in this paper is an initial attempt to investigate the cause of collapse of offshore structures due to ice loading.
Resumo:
A simple probabilistic model for predicting crack growth behavior under random loading is presented. In the model, the parameters c and m in the Paris-Erdogan Equation are taken as random variables, and their stochastic characteristic values are obtained through fatigue crack propagation tests on an offshore structural steel under constant amplitude loading. Furthermore, by using the Monte Carlo simulation technique, the fatigue crack propagation life to reach a given crack length is predicted. The tests are conducted to verify the applicability of the theoretical prediction of the fatigue crack propagation.
Resumo:
Based on the dynamic governing equation of propagating buckle on a beam on a nonlinear elastic foundation, this paper deals with an important problem of buckle arrest by combining the FEM with a time integration technique. A new conclusion completely different from that by the quasi-static analysis about the buckle arrestor design is drawn. This shows that the inertia of the beam cannot be ignored in the analysis under consideration, especially when the buckle propagation is suddenly stopped by the arrestors.
Resumo:
An empirical study is made on the fatigue crack growth rate in ferrite-martensite dual-phase (FMDP) steel. Particular attention is given to the effect of ferrite content in the range of 24.2% to 41.5% where good fatigue resistance was found at 33.8%. Variations in ferrite content did not affect the crack growth rate when plotted against the effective stress intensity factor range which was assumed to follow a linear relation with the crack tip stress intensity factor range ΔK. A high corresponds to uniformly distributed small size ferrite and martensite. No other appreciable correlation could be ralated to the microstructure morphology of the FMDP steel. The closure stress intensity factor , however, is affected by the ferrite content with reaching a maximum value of 0.7. In general, crack growth followed the interphase between the martensite and ferrite.
Dividing the fatigue crack growth process into Stage I and II where the former would be highly sensitive to changes in ΔK and the latter would increase with ΔK depending on the ratio. The same data when correlated with the strain energy density factor range ΔS showed negligible dependence on mean stress or R ratio for Stage I crack growth. A parameter α involving the ratio of ultimate stress to yield stress, percent reduction of area and R is introduced for Stage II crack growth so that the data for different R would collapse onto a single curve with a narrow scatter band when plotted against αΔS.
Resumo:
Fatigue crack growth and its threshold are investigated at a stress ratio of 0.5 for the three-point bend specimen made of Austenitic stainless steel. The effect of grain size on the crack tip plastic deformation is investigated. The results show that the threshold value Δkth increases linearly with the square root of grain size d and the growth rate is slower for materials with larger grain size. The plastic zone size and ratio for different grain sizes are different at the threshold. The maximum stress intensity factor is kmax and σys is the yield strength. At the same time, the characteristics of the plastic deformation development is discontinuous and anti-symmetric as the growth rate is increased from 2·10—8 to 10−7 mm/cycle.
Resumo:
In this paper we deduce the formulae for rate-constant of microreaction with high resolving power of energy from the time-dependent Schrdinger equation for the general case when there is a depression on the reaetional potential surface (when the depression is zero in depth, the case is reduced to that of Eyring). Based on the assumption that Bolzmann distribution is appropriate to the description of reactants, the formula for the constant of macrorate in a form similar to Eyring's is deduced and the expression for the coefficient of transmission is given. When there is no depression on the reactional potential surface and the coefficient of transmission does not seriously depend upon temperature, it is reduced to Eyring's. Thus Eyring's is a special case of the present work.
Resumo:
Part I.
We have developed a technique for measuring the depth time history of rigid body penetration into brittle materials (hard rocks and concretes) under a deceleration of ~ 105 g. The technique includes bar-coded projectile, sabot-projectile separation, detection and recording systems. Because the technique can give very dense data on penetration depth time history, penetration velocity can be deduced. Error analysis shows that the technique has a small intrinsic error of ~ 3-4 % in time during penetration, and 0.3 to 0.7 mm in penetration depth. A series of 4140 steel projectile penetration into G-mixture mortar targets have been conducted using the Caltech 40 mm gas/ powder gun in the velocity range of 100 to 500 m/s.
We report, for the first time, the whole depth-time history of rigid body penetration into brittle materials (the G-mixture mortar) under 105 g deceleration. Based on the experimental results, including penetration depth time history, damage of recovered target and projectile materials and theoretical analysis, we find:
1. Target materials are damaged via compacting in the region in front of a projectile and via brittle radial and lateral crack propagation in the region surrounding the penetration path. The results suggest that expected cracks in front of penetrators may be stopped by a comminuted region that is induced by wave propagation. Aggregate erosion on the projectile lateral surface is < 20% of the final penetration depth. This result suggests that the effect of lateral friction on the penetration process can be ignored.
2. Final penetration depth, Pmax, is linearly scaled with initial projectile energy per unit cross-section area, es , when targets are intact after impact. Based on the experimental data on the mortar targets, the relation is Pmax(mm) 1.15es (J/mm2 ) + 16.39.
3. Estimation of the energy needed to create an unit penetration volume suggests that the average pressure acting on the target material during penetration is ~ 10 to 20 times higher than the unconfined strength of target materials under quasi-static loading, and 3 to 4 times higher than the possible highest pressure due to friction and material strength and its rate dependence. In addition, the experimental data show that the interaction between cracks and the target free surface significantly affects the penetration process.
4. Based on the fact that the penetration duration, tmax, increases slowly with es and does not depend on projectile radius approximately, the dependence of tmax on projectile length is suggested to be described by tmax(μs) = 2.08es (J/mm2 + 349.0 x m/(πR2), in which m is the projectile mass in grams and R is the projectile radius in mm. The prediction from this relation is in reasonable agreement with the experimental data for different projectile lengths.
5. Deduced penetration velocity time histories suggest that whole penetration history is divided into three stages: (1) An initial stage in which the projectile velocity change is small due to very small contact area between the projectile and target materials; (2) A steady penetration stage in which projectile velocity continues to decrease smoothly; (3) A penetration stop stage in which projectile deceleration jumps up when velocities are close to a critical value of ~ 35 m/s.
6. Deduced averaged deceleration, a, in the steady penetration stage for projectiles with same dimensions is found to be a(g) = 192.4v + 1.89 x 104, where v is initial projectile velocity in m/s. The average pressure acting on target materials during penetration is estimated to be very comparable to shock wave pressure.
7. A similarity of penetration process is found to be described by a relation between normalized penetration depth, P/Pmax, and normalized penetration time, t/tmax, as P/Pmax = f(t/tmax, where f is a function of t/tmax. After f(t/tmax is determined using experimental data for projectiles with 150 mm length, the penetration depth time history for projectiles with 100 mm length predicted by this relation is in good agreement with experimental data. This similarity also predicts that average deceleration increases with decreasing projectile length, that is verified by the experimental data.
8. Based on the penetration process analysis and the present data, a first principle model for rigid body penetration is suggested. The model incorporates the models for contact area between projectile and target materials, friction coefficient, penetration stop criterion, and normal stress on the projectile surface. The most important assumptions used in the model are: (1) The penetration process can be treated as a series of impact events, therefore, pressure normal to projectile surface is estimated using the Hugoniot relation of target material; (2) The necessary condition for penetration is that the pressure acting on target materials is not lower than the Hugoniot elastic limit; (3) The friction force on projectile lateral surface can be ignored due to cavitation during penetration. All the parameters involved in the model are determined based on independent experimental data. The penetration depth time histories predicted from the model are in good agreement with the experimental data.
9. Based on planar impact and previous quasi-static experimental data, the strain rate dependence of the mortar compressive strength is described by σf/σ0f = exp(0.0905(log(έ/έ_0) 1.14, in the strain rate range of 10-7/s to 103/s (σ0f and έ are reference compressive strength and strain rate, respectively). The non-dispersive Hugoniot elastic wave in the G-mixture has an amplitude of ~ 0.14 GPa and a velocity of ~ 4.3 km/s.
Part II.
Stress wave profiles in vitreous GeO2 were measured using piezoresistance gauges in the pressure range of 5 to 18 GPa under planar plate and spherical projectile impact. Experimental data show that the response of vitreous GeO2 to planar shock loading can be divided into three stages: (1) A ramp elastic precursor has peak amplitude of 4 GPa and peak particle velocity of 333 m/s. Wave velocity decreases from initial longitudinal elastic wave velocity of 3.5 km/s to 2.9 km/s at 4 GPa; (2) A ramp wave with amplitude of 2.11 GPa follows the precursor when peak loading pressure is 8.4 GPa. Wave velocity drops to the value below bulk wave velocity in this stage; (3) A shock wave achieving final shock state forms when peak pressure is > 6 GPa. The Hugoniot relation is D = 0.917 + 1.711u (km/s) using present data and the data of Jackson and Ahrens [1979] when shock wave pressure is between 6 and 40 GPa for ρ0 = 3.655 gj cm3 . Based on the present data, the phase change from 4-fold to 6-fold coordination of Ge+4 with O-2 in vitreous GeO2 occurs in the pressure range of 4 to 15 ± 1 GPa under planar shock loading. Comparison of the shock loading data for fused SiO2 to that on vitreous GeO2 demonstrates that transformation to the rutile structure in both media are similar. The Hugoniots of vitreous GeO2 and fused SiO2 are found to coincide approximately if pressure in fused SiO2 is scaled by the ratio of fused SiO2to vitreous GeO2 density. This result, as well as the same structure, provides the basis for considering vitreous Ge02 as an analogous material to fused SiO2 under shock loading. Experimental results from the spherical projectile impact demonstrate: (1) The supported elastic shock in fused SiO2 decays less rapidly than a linear elastic wave when elastic wave stress amplitude is higher than 4 GPa. The supported elastic shock in vitreous GeO2 decays faster than a linear elastic wave; (2) In vitreous GeO2 , unsupported shock waves decays with peak pressure in the phase transition range (4-15 GPa) with propagation distance, x, as α 1/x-3.35 , close to the prediction of Chen et al. [1998]. Based on a simple analysis on spherical wave propagation, we find that the different decay rates of a spherical elastic wave in fused SiO2 and vitreous GeO2 is predictable on the base of the compressibility variation with stress under one-dimensional strain condition in the two materials.
Resumo:
The propagation of the fast muon population mainly due to collisional effect in a dense deuterium-tritium (DT for short) mixture is investigated and analysed within the framework of the relativistic Fokker-Planck equation. Without the approximation that the muons propagate straightly in the DT mixture, the muon penetration length, the straggling length, and the mean transverse dispersion radius are calculated for different initial energies, and especially for different densities of the densely compressed DT mixture in our suggested muon-driven fast ignition (FI). Unlike laser-driven FI requiring super-high temperature, muons can catalyze DT fusion at lower temperatures and may generate an ignition sparkle before the self-heating fusion follows. Our calculation is important for the feasibility and the experimental study of muon-driven FI.
Resumo:
The interaction of shaped laser pulses with plasmas is studied in a strict theoretical framework without adopting the slow-varying envelope approximation (SVEA). Any physical quantities involved in the interaction are denoted as a summation of different real quantities of respective phases. The relationships among the phases of those real quantities and their moduli are strictly analyzed. Such strict analyses lead to a more exact equation set for the three-dimensional envelope of the laser pulse, which is not based on SVEA. Based on this equation set, self-focusing, Raman, and modulation instabilities could be discussed in a unified framework. The solutions of this equation set for the laser envelope reveal many possible multicolor laser modes in plasmas. The energy and the shape of a pulse determine its propagation through plasmas in a multicolor mode or in a monochromic mode. A global growth rate is introduced to measure the speed of the transition from the monochromic mode in vacuum to a possible mode in plasmas. (c) 2006 American Institute of Physics.
Resumo:
The nonlinear behavior of a probe pulse propagating in a medium with electromagnetically induced transparency is studied both numerically and analytically. A new type of nonlinear wave equation is proposed in which the noninstantaneous response of nonlinear polarization is treated properly. The resulting nonlinear behavior of the propagating probe pulse is shown to be fundamentally different from that predicted by the simple nonlinear Schrodinger-like wave equation that considers only instantaneous Kerr nonlinearity. (c) 2005 Optical Society of America.