937 resultados para rank-based procedure
Resumo:
The objective was to develop and test a procedure for applying variable rates of fertilizers and evaluate yield response in coffee (Coffea arabica L.) with regard to the application of phosphorus and potassium. The work was conducted during the 2004 season in a 6.4 ha field located in central Sao Paulo state. Two treatments were applied with alternating strips of fixed and variable rates during the whole season: one following the fertilizing procedures recommended locally, and the other based on a grid soil sampling. A prototype pneumatic fertilizer applicator was used, carrying two conveyor belts, one for each row. Harvesting was done with a commercial harvester equipped with a customized volumetric yield monitor, separating the two treatments. Data were analyzed based on geostatistics, correlations and regressions. The procedure showed to be feasible and effective. The area that received fertilizer applications at a variable rate showed a 34% yield increase compared to the area that received a fixed rate. The variable rate fertilizer resulted in a savings of 23% in phosphate fertilizer and a 13% increase in potassium fertilizer, when compared to fixed rate fertilizer. Yield in 2005, the year after the variable rate treatments, still presented residual effect from treatments carried out during the previous cycle.
Resumo:
An enantioselective liquid chromatographic method using two-phase hollow fiber liquid-phase microextraction (HF-LPME-HPLC) was developed for the determination of isradipine (ISR) enantiomers and its main metabolite (pyridine derivative of isradipine, PDI) in microsomal fractions isolated from rat liver. The analytes were extracted from 1 mL of microsomal medium using a two-phase HF-LPME procedure with hexyl acetate as the acceptor phase, 30 min of extraction, and sample agitation at 1,500 rpm. For the first time, ISR enantiomers and PDI were resolved. For this separation, a ChiralpakA (R) AD column with hexane/2-propanol/ethanol (94:04:02, v/v/v) as the mobile phase at a flow rate of 1.5 mL min(-1) was used. The column was kept at 23 A +/- 2 A degrees C. The drug and metabolite detection was performed at 325 nm and the internal standard oxybutynin was detected at 225 nm. The recoveries were 23% for PDI and 19% for each ISR enantiomer. The method presented quantification limits (LOQ) of 50 ng mL(-1) and was linear over the concentration range of 50-5,000 and 50-2,500 ng mL(-1) for PDI and each ISR enantiomer, respectively. The validated method was employed to an in vitro biotransformation study of ISR using rat liver microsomal fraction showing that (+)-(S)-ISR is preferentially biotransformed.
Resumo:
A new and promising nitrosyl ruthenium complex, [Ru(NO)(bdqi-COOH)(terpy)](PF(6))(3), bdqi-COOH is 3,4-diiminebenzoic acid and terpy is 2,2`-terpyridine, has been synthesized as a NO donor agent. The procedure used for [Ru(NO)(bdqi-COOH)(terpy)](PF(6))(3) synthesis has, apparently, yielded the formation of two isomers in which the ligand bdqi-COOH appears to be coordinated in its reduced form (bdcat-COOH), which could have differences in their pharmacological properties. Therefore, it was intended to separate the two possible isomers by high-performance liquid chromatography (HPLC) and to characterize them by high resolution mass spectrometry (QTOF MS) and by magnetic nuclear resonance spectroscopy (NMR). The results obtained by MS showed that the ESI-MS mass spectra of both HPLC column fractions, e.g. peak 1 and peak 2, are essentially equal, showing that both isomers display nearly identical gas-phase behavior with clusters of isotopologue ions centered at m/z 573, m/z 543 and m/z 513. Regarding the NMR analysis, the results showed that the positional isomerism is located in the bdqi-COOH ligand. From the observed results it can be concluded that the synthesis procedure that has been used results in the formation of two [Ru(terpy)(bdqi-COOH)NO](PF(6))(3) isomers. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
A simple and fast method is described for simultaneous determination of methylmercury (MeHg), ethylmercury (Et-Hg) and inorganic mercury (Ino-Hg) in blood samples by using capillary gas chromatography-inductively coupled plasma mass spectrometry (GC-ICP-MS) after derivatization and alkaline digestion. Closed-vessel microwave assisted digestion conditions with tetramethylammonium hydroxide (TMAH) have been optimized. Derivatization by using ethylation and propylation procedures have also been evaluated and compared. The absolute detection limits (using a 1 mu L injection) obtained by GC-ICP-MS with ethylation were 40 fg for MeHg and Ino-Hg, respectively, and with propylation were 50, 20 and 50 fg for MeHg, Et-Hg and Ino-Hg, respectively. Method accuracy is traceable to Standard Reference Material (SRM) 966 Toxic Metals in Bovine Blood from the National Institute of Standards and Technology (NIST). Additional validation is provided based on the comparison of results obtained for mercury speciation in blood samples with the proposed procedure and with a previously reported LC-ICP-MS method. With the new proposed procedure no tedious clean-up steps are required and a considerable improvement of the time of analysis was achieved compared to other methods using GC separation.
Resumo:
This paper provides a characterization of QALYs, the most important outcome measure in medical decision making, in the context of a general rank dependent utility model. We show that both for chronic and for nonchronic health states the characterization of QALYs depends on intuitive conditions. This facilitates the assessment of the validity of QALYs in rank dependent non-expected utility theories and a comparison with other utility based measures of health.
Resumo:
The constrained regularisation procedure was applied to compute the pore size distributions (PSDs, f(x)) for a variety of activated carbons using overall adsorption equation based on the combination of the Kelvin equation and the statistical adsorbed film thickness. The impact of the boundary values of relative nitrogen pressure p/p(0) was analysed on the basis of the corresponding alterations in the PSDs. Changes in microporosity and mesoporosity of activated carbons can be described adequately only when the range of p/p(0) is as wide as possible, as at a high initial p/p(0) value, the f(x) curves can be broadened with shifted maxima especially for micropores and narrow mesopores. Comparative analysis of the PSDs and the adsorption potential, adsorption energy and fractal dimension distributions gives useful information on the complete description of the adsorbent characteristics. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Lateral ventricular volumes based on segmented brain MR images can be significantly underestimated if partial volume effects are not considered. This is because a group of voxels in the neighborhood of lateral ventricles is often mis-classified as gray matter voxels due to partial volume effects. This group of voxels is actually a mixture of ventricular cerebro-spinal fluid and the white matter and therefore, a portion of it should be included as part of the lateral ventricular structure. In this note, we describe an automated method for the measurement of lateral ventricular volumes on segmented brain MR images. Image segmentation was carried in combination of intensity correction and thresholding. The method is featured with a procedure for addressing mis-classified voxels in the surrounding of lateral ventricles. A detailed analysis showed that lateral ventricular volumes could be underestimated by 10 to 30% depending upon the size of the lateral ventricular structure, if mis-classified voxels were not included. Validation of the method was done through comparison with the averaged manually traced volumes. Finally, the merit of the method is demonstrated in the evaluation of the rate of lateral ventricular enlargement. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
Motivation: This paper introduces the software EMMIX-GENE that has been developed for the specific purpose of a model-based approach to the clustering of microarray expression data, in particular, of tissue samples on a very large number of genes. The latter is a nonstandard problem in parametric cluster analysis because the dimension of the feature space (the number of genes) is typically much greater than the number of tissues. A feasible approach is provided by first selecting a subset of the genes relevant for the clustering of the tissue samples by fitting mixtures of t distributions to rank the genes in order of increasing size of the likelihood ratio statistic for the test of one versus two components in the mixture model. The imposition of a threshold on the likelihood ratio statistic used in conjunction with a threshold on the size of a cluster allows the selection of a relevant set of genes. However, even this reduced set of genes will usually be too large for a normal mixture model to be fitted directly to the tissues, and so the use of mixtures of factor analyzers is exploited to reduce effectively the dimension of the feature space of genes. Results: The usefulness of the EMMIX-GENE approach for the clustering of tissue samples is demonstrated on two well-known data sets on colon and leukaemia tissues. For both data sets, relevant subsets of the genes are able to be selected that reveal interesting clusterings of the tissues that are either consistent with the external classification of the tissues or with background and biological knowledge of these sets.
Resumo:
The binary diffusivities of water in low molecular weight sugars; fructose, sucrose and a high molecular weight carbohydrate; maltodextrin (DE 11) and the effective diffusivities of water in mixtures of these sugars (sucrose, glucose, fructose) and maltodextrin (DE 11) were determined using a simplified procedure based on the Regular Regime Approach. The effective diffusivity of these mixtures exhibited both the concentration and molecular weight dependence. Surface stickiness was observed in all samples during desorption, with fructose exhibiting the highest and maltodextrin the lowest. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A detailed analysis procedure is described for evaluating rates of volumetric change in brain structures based on structural magnetic resonance (MR) images. In this procedure, a series of image processing tools have been employed to address the problems encountered in measuring rates of change based on structural MR images. These tools include an algorithm for intensity non-uniforniity correction, a robust algorithm for three-dimensional image registration with sub-voxel precision and an algorithm for brain tissue segmentation. However, a unique feature in the procedure is the use of a fractional volume model that has been developed to provide a quantitative measure for the partial volume effect. With this model, the fractional constituent tissue volumes are evaluated for voxels at the tissue boundary that manifest partial volume effect, thus allowing tissue boundaries be defined at a sub-voxel level and in an automated fashion. Validation studies are presented on key algorithms including segmentation and registration. An overall assessment of the method is provided through the evaluation of the rates of brain atrophy in a group of normal elderly subjects for which the rate of brain atrophy due to normal aging is predictably small. An application of the method is given in Part 11 where the rates of brain atrophy in various brain regions are studied in relation to normal aging and Alzheimer's disease. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
We present global and regional rates of brain atrophy measured on serially acquired T1-weighted brain MR images for a group of Alzheimer's disease (AD) patients and age-matched normal control (NC) subjects using the analysis procedure described in Part I. Three rates of brain atrophy: the rate of atrophy in the cerebrum, the rate of lateral ventricular enlargement and the rate of atrophy in the region of temporal lobes, were evaluated for 14 AD patients and 14 age-matched NC subjects. All three rates showed significant differences between the two groups, However, the greatest separation of the two groups was obtained when the regional rates were combined. This application has demonstrated that rates of brain atrophy, especially in specific regions of the brain, based on MR images can provide sensitive measures for evaluating the progression of AD. These measures will be useful for the evaluation of therapeutic effects of novel therapies for AD. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
Motivation: A major issue in cell biology today is how distinct intracellular regions of the cell, like the Golgi Apparatus, maintain their unique composition of proteins and lipids. The cell differentially separates Golgi resident proteins from proteins that move through the organelle to other subcellular destinations. We set out to determine if we could distinguish these two types of transmembrane proteins using computational approaches. Results: A new method has been developed to predict Golgi membrane proteins based on their transmembrane domains. To establish the prediction procedure, we took the hydrophobicity values and frequencies of different residues within the transmembrane domains into consideration. A simple linear discriminant function was developed with a small number of parameters derived from a dataset of Type II transmembrane proteins of known localization. This can discriminate between proteins destined for Golgi apparatus or other locations (post-Golgi) with a success rate of 89.3% or 85.2%, respectively on our redundancy-reduced data sets.
Resumo:
In microarray studies, the application of clustering techniques is often used to derive meaningful insights into the data. In the past, hierarchical methods have been the primary clustering tool employed to perform this task. The hierarchical algorithms have been mainly applied heuristically to these cluster analysis problems. Further, a major limitation of these methods is their inability to determine the number of clusters. Thus there is a need for a model-based approach to these. clustering problems. To this end, McLachlan et al. [7] developed a mixture model-based algorithm (EMMIX-GENE) for the clustering of tissue samples. To further investigate the EMMIX-GENE procedure as a model-based -approach, we present a case study involving the application of EMMIX-GENE to the breast cancer data as studied recently in van 't Veer et al. [10]. Our analysis considers the problem of clustering the tissue samples on the basis of the genes which is a non-standard problem because the number of genes greatly exceed the number of tissue samples. We demonstrate how EMMIX-GENE can be useful in reducing the initial set of genes down to a more computationally manageable size. The results from this analysis also emphasise the difficulty associated with the task of separating two tissue groups on the basis of a particular subset of genes. These results also shed light on why supervised methods have such a high misallocation error rate for the breast cancer data.
Resumo:
The outcome of dendritic cell (DC) presentation of Ag to T cells via the TCR/MHC synapse is determined by second signaling through CD80/86 and, importantly, by ligation of costimulatory ligands and receptors located at the DC and T cell surfaces. Downstream signaling triggered by costimulatory molecule ligation results in reciprocal DC and T cell activation and survival, which predisposes to enhanced T cell-mediated immune responses. In this study, we used adenoviral vectors to express a model tumor Ag (the E7 oncoprotein of human papillomavirus 16) with or without coexpression of receptor activator of NF-kappaB (RANK)/RANK ligand (RANKL) or CD40/CD40L costimulatory molecules, and used these transgenic DCs to immunize mice for the generation of E7-directed CD8(+) T cell responses. We show that coexpression of RANK/RANKL, but not CD40/CD40L, in E7-expressing DCs augmented E7-specific IFN-gamma-secreting effector and memory T cells and E7-specific CTLs. These responses were also augmented by coexpression of T cell costimulatory molecules (RANKL and CD40L) or DC costimulatory molecules (RANK and CD40) in the E7-expressing DC immunogens. Augmentation of CTL responses correlated with up-regulation of CD80 and CD86 expression in DCs transduced with costimulatory molecules, suggesting a mechanism for enhanced T cell activation/survival. These results have generic implications for improved tumor Ag-expressing DC vaccines, and specific implications for a DC-based vaccine approach for human papillomavirus 16-associated cervical carcinoma.
Resumo:
Polymers have become the reference material for high reliability and performance applications. In this work, a multi-scale approach is proposed to investigate the mechanical properties of polymeric based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, a coupling of a Finite Element Method (FEM) and Molecular Dynamics (MD) modeling in an iterative procedure was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, the previous described multi-scale method computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multi-scale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.