933 resultados para rainfall-runoff empirical statistical model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The consumers are becoming more concerned about food quality, especially regarding how, when and where the foods are produced (Haglund et al., 1999; Kahl et al., 2004; Alföldi, et al., 2006). Therefore, during recent years there has been a growing interest in the methods for food quality assessment, especially in the picture-development methods as a complement to traditional chemical analysis of single compounds (Kahl et al., 2006). The biocrystallization as one of the picture-developing method is based on the crystallographic phenomenon that when crystallizing aqueous solutions of dihydrate CuCl2 with adding of organic solutions, originating, e.g., from crop samples, biocrystallograms are generated with reproducible crystal patterns (Kleber & Steinike-Hartung, 1959). Its output is a crystal pattern on glass plates from which different variables (numbers) can be calculated by using image analysis. However, there is a lack of a standardized evaluation method to quantify the morphological features of the biocrystallogram image. Therefore, the main sakes of this research are (1) to optimize an existing statistical model in order to describe all the effects that contribute to the experiment, (2) to investigate the effect of image parameters on the texture analysis of the biocrystallogram images, i.e., region of interest (ROI), color transformation and histogram matching on samples from the project 020E170/F financed by the Federal Ministry of Food, Agriculture and Consumer Protection(BMELV).The samples are wheat and carrots from controlled field and farm trials, (3) to consider the strongest effect of texture parameter with the visual evaluation criteria that have been developed by a group of researcher (University of Kassel, Germany; Louis Bolk Institute (LBI), Netherlands and Biodynamic Research Association Denmark (BRAD), Denmark) in order to clarify how the relation of the texture parameter and visual characteristics on an image is. The refined statistical model was accomplished by using a lme model with repeated measurements via crossed effects, programmed in R (version 2.1.0). The validity of the F and P values is checked against the SAS program. While getting from the ANOVA the same F values, the P values are bigger in R because of the more conservative approach. The refined model is calculating more significant P values. The optimization of the image analysis is dealing with the following parameters: ROI(Region of Interest which is the area around the geometrical center), color transformation (calculation of the 1 dimensional gray level value out of the three dimensional color information of the scanned picture, which is necessary for the texture analysis), histogram matching (normalization of the histogram of the picture to enhance the contrast and to minimize the errors from lighting conditions). The samples were wheat from DOC trial with 4 field replicates for the years 2003 and 2005, “market samples”(organic and conventional neighbors with the same variety) for 2004 and 2005, carrot where the samples were obtained from the University of Kassel (2 varieties, 2 nitrogen treatments) for the years 2004, 2005, 2006 and “market samples” of carrot for the years 2004 and 2005. The criterion for the optimization was repeatability of the differentiation of the samples over the different harvest(years). For different samples different ROIs were found, which reflect the different pictures. The best color transformation that shows efficiently differentiation is relied on gray scale, i.e., equal color transformation. The second dimension of the color transformation only appeared in some years for the effect of color wavelength(hue) for carrot treated with different nitrate fertilizer levels. The best histogram matching is the Gaussian distribution. The approach was to find a connection between the variables from textural image analysis with the different visual criteria. The relation between the texture parameters and visual evaluation criteria was limited to the carrot samples, especially, as it could be well differentiated by the texture analysis. It was possible to connect groups of variables of the texture analysis with groups of criteria from the visual evaluation. These selected variables were able to differentiate the samples but not able to classify the samples according to the treatment. Contrarily, in case of visual criteria which describe the picture as a whole there is a classification in 80% of the sample cases possible. Herewith, it clearly can find the limits of the single variable approach of the image analysis (texture analysis).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research quantitatively evaluates the water retention capacity and flood control function of the forest catchments by using hydrological data of the large flood events which happened after the serious droughts. The objective sites are the Oodo Dam and the Sameura Dam catchments in Japan. The kinematic wave model, which considers saturated and unsaturated sub-surface soil zones, is used for the rainfall-runoff analysis. The result shows that possible storage volume of the Oodo Dam catchment is 162.26 MCM in 2005, while that of Samerua is 102.83 MCM in 2005 and 102.64 MCM in 2007. Flood control function of the Oodo Dam catchment is 173 mm in water depth in 2005, while the Sameura Dam catchment 114 mm in 2005 and 126 mm in 2007. This indicates that the Oodo Dam catchment has more than twice as big water capacity as its capacity (78.4 mm), while the Sameura Dam catchment has about one-fifth of the its storage capacity (693 mm).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes HidroGIS, a GIS platform developed by Water Resources Program at Universidad Nacional de Colombia at Medellín. HidroSIG is a tool for hydrological variables visualization and analysis, using a set of modules that make this software a powerful tool for hydrological modeling. HidroSIG has tools for digital terrain models processing, water supply estimation using long term water balance in watersheds, a rainfall-runoff model, a model for landslide susceptibility estimation, an one-dimensional pollutant transport model, tools for homogeneity analysis in time series and tools for satellite images classification. The tools in development status are also described

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se presenta el análisis de sensibilidad de un modelo de percepción de marca y ajuste de la inversión en marketing desarrollado en el Laboratorio de Simulación de la Universidad del Rosario. Este trabajo de grado consta de una introducción al tema de análisis de sensibilidad y su complementario el análisis de incertidumbre. Se pasa a mostrar ambos análisis usando un ejemplo simple de aplicación del modelo mediante la aplicación exhaustiva y rigurosa de los pasos descritos en la primera parte. Luego se hace una discusión de la problemática de medición de magnitudes que prueba ser el factor más complejo de la aplicación del modelo en el contexto práctico y finalmente se dan conclusiones sobre los resultados de los análisis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Satellite-based rainfall monitoring is widely used for climatological studies because of its full global coverage but it is also of great importance for operational purposes especially in areas such as Africa where there is a lack of ground-based rainfall data. Satellite rainfall estimates have enormous potential benefits as input to hydrological and agricultural models because of their real time availability, low cost and full spatial coverage. One issue that needs to be addressed is the uncertainty on these estimates. This is particularly important in assessing the likely errors on the output from non-linear models (rainfall-runoff or crop yield) which make use of the rainfall estimates, aggregated over an area, as input. Correct assessment of the uncertainty on the rainfall is non-trivial as it must take account of • the difference in spatial support of the satellite information and independent data used for calibration • uncertainties on the independent calibration data • the non-Gaussian distribution of rainfall amount • the spatial intermittency of rainfall • the spatial correlation of the rainfall field This paper describes a method for estimating the uncertainty on satellite-based rainfall values taking account of these factors. The method involves firstly a stochastic calibration which completely describes the probability of rainfall occurrence and the pdf of rainfall amount for a given satellite value, and secondly the generation of ensemble of rainfall fields based on the stochastic calibration but with the correct spatial correlation structure within each ensemble member. This is achieved by the use of geostatistical sequential simulation. The ensemble generated in this way may be used to estimate uncertainty at larger spatial scales. A case study of daily rainfall monitoring in the Gambia, west Africa for the purpose of crop yield forecasting is presented to illustrate the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is generally agreed that changing climate variability, and the associated change in climate extremes, may have a greater impact on environmentally vulnerable regions than a changing mean. This research investigates rainfall variability, rainfall extremes, and their associations with atmospheric and oceanic circulations over southern Africa, a region that is considered particularly vulnerable to extreme events because of numerous environmental, social, and economic pressures. Because rainfall variability is a function of scale, high-resolution data are needed to identify extreme events. Thus, this research uses remotely sensed rainfall data and climate model experiments at high spatial and temporal resolution, with the overall aim being to investigate the ways in which sea surface temperature (SST) anomalies influence rainfall extremes over southern Africa. Extreme rainfall identification is achieved by the high-resolution microwave/infrared rainfall algorithm dataset. This comprises satellite-derived daily rainfall from 1993 to 2002 and covers southern Africa at a spatial resolution of 0.1° latitude–longitude. Extremes are extracted and used with reanalysis data to study possible circulation anomalies associated with extreme rainfall. Anomalously cold SSTs in the central South Atlantic and warm SSTs off the coast of southwestern Africa seem to be statistically related to rainfall extremes. Further, through a number of idealized climate model experiments, it would appear that both decreasing SSTs in the central South Atlantic and increasing SSTs off the coast of southwestern Africa lead to a demonstrable increase in daily rainfall and rainfall extremes over southern Africa, via local effects such as increased convection and remote effects such as an adjustment of the Walker-type circulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent analysis of the Arctic Oscillation (AO) in the stratosphere and troposphere has suggested that predictability of the state of the tropospheric AO may be obtained from the state of the stratospheric AO. However, much of this research has been of a purely qualitative nature. We present a more thorough statistical analysis of a long AO amplitude dataset which seeks to establish the magnitude of such a link. A relationship between the AO in the lower stratosphere and on the 1000 hPa surface on a 10-45 day time-scale is revealed. The relationship accounts for 5% of the variance of the 1000 hPa time series at its peak value and is significant at the 5% level. Over a similar time-scale the 1000 hPa time series accounts for 1% of itself and is not significant at the 5% level. Further investigation of the relationship reveals that it is only present during the winter season and in particular during February and March. It is also demonstrated that using stratospheric AO amplitude data as a predictor in a simple statistical model results in a gain of skill of 5% over a troposphere-only statistical model. This gain in skill is not repeated if an unrelated time series is included as a predictor in the model. Copyright © 2003 Royal Meteorological Society

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial and temporal dynamics in the stream water NO3-N concentrations in a major European river-system, the Garonne (62,700 km(2)), are described and related to variations in climate, land management, and effluent point-sources using multivariate statistics. Building on this, the Hydrologiska Byrans Vattenbalansavdelning (HBV) rainfall-runoff model and the Integrated Catchment Model of Nitrogen (INCA-N) are applied to simulate the observed flow and N dynamics. This is done to help us to understand which factors and processes control the flow and N dynamics in different climate zones and to assess the relative inputs from diffuse and point sources across the catchment. This is the first application of the linked HBV and INCA-N models to a major European river system commensurate with the largest basins to be managed tinder the Water Framework Directive. The simulations suggest that in the lowlands, seasonal patterns in the stream water NO3-N concentrations emerge and are dominated by diffuse agricultural inputs, with an estimated 75% of the river load in the lowlands derived from arable farming. The results confirm earlier European catchment studies. Namely, current semi-distrubuted catchment-scale dynamic models, which integrate variations in land cover, climate, and a simple representation of the terrestrial and in-stream N cycle, are able to simulate seasonal NO3-N patterns at large spatial (> 300 km(2)) and temporal (>= monthly) scales using available national datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial and temporal dynamics in the stream water NO3-N concentrations in a major European river-system, the Garonne (62,700 km(2)), are described and related to variations in climate, land management, and effluent point-sources using multivariate statistics. Building on this, the Hydrologiska Byrans Vattenbalansavdelning (HBV) rainfall-runoff model and the Integrated Catchment Model of Nitrogen (INCA-N) are applied to simulate the observed flow and N dynamics. This is done to help us to understand which factors and processes control the flow and N dynamics in different climate zones and to assess the relative inputs from diffuse and point sources across the catchment. This is the first application of the linked HBV and INCA-N models to a major European river system commensurate with the largest basins to be managed tinder the Water Framework Directive. The simulations suggest that in the lowlands, seasonal patterns in the stream water NO3-N concentrations emerge and are dominated by diffuse agricultural inputs, with an estimated 75% of the river load in the lowlands derived from arable farming. The results confirm earlier European catchment studies. Namely, current semi-distrubuted catchment-scale dynamic models, which integrate variations in land cover, climate, and a simple representation of the terrestrial and in-stream N cycle, are able to simulate seasonal NO3-N patterns at large spatial (> 300 km(2)) and temporal (>= monthly) scales using available national datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important element of the developing field of proteomics is to understand protein-protein interactions and other functional links amongst genes. Across-species correlation methods for detecting functional links work on the premise that functionally linked proteins will tend to show a common pattern of presence and absence across a range of genomes. We describe a maximum likelihood statistical model for predicting functional gene linkages. The method detects independent instances of the correlated gain or loss of pairs of proteins on phylogenetic trees, reducing the high rates of false positives observed in conventional across-species methods that do not explicitly incorporate a phylogeny. We show, in a dataset of 10,551 protein pairs, that the phylogenetic method improves by up to 35% on across-species analyses at identifying known functionally linked proteins. The method shows that protein pairs with at least two to three correlated events of gain or loss are almost certainly functionally linked. Contingent evolution, in which one gene's presence or absence depends upon the presence of another, can also be detected phylogenetically, and may identify genes whose functional significance depends upon its interaction with other genes. Incorporating phylogenetic information improves the prediction of functional linkages. The improvement derives from having a lower rate of false positives and from detecting trends that across-species analyses miss. Phylogenetic methods can easily be incorporated into the screening of large-scale bioinformatics datasets to identify sets of protein links and to characterise gene networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. We studied a reintroduced population of the formerly critically endangered Mauritius kestrel Falco punctatus Temmink from its inception in 1987 until 2002, by which time the population had attained carrying capacity for the study area. Post-1994 the population received minimal management other than the provision of nestboxes. 2. We analysed data collected on survival (1987-2002) using program MARK to explore the influence of density-dependent and independent processes on survival over the course of the population's development. 3.We found evidence for non-linear, threshold density dependence in juvenile survival rates. Juvenile survival was also strongly influenced by climate, with the temporal distribution of rainfall during the cyclone season being the most influential climatic variable. Adult survival remained constant throughout. 4. Our most parsimonious capture-mark-recapture statistical model, which was constrained by density and climate, explained 75.4% of the temporal variation exhibited in juvenile survival rates over the course of the population's development. 5. This study is an example of how data collected as part of a threatened species recovery programme can be used to explore the role and functional form of natural population regulatory processes. With the improvements in conservation management techniques and the resulting success stories, formerly threatened species offer unique opportunities to further our understanding of the fundamental principles of population ecology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presented herein is an experimental design that allows the effects of several radiative forcing factors on climate to be estimated as precisely as possible from a limited suite of atmosphere-only general circulation model (GCM) integrations. The forcings include the combined effect of observed changes in sea surface temperatures, sea ice extent, stratospheric (volcanic) aerosols, and solar output, plus the individual effects of several anthropogenic forcings. A single linear statistical model is used to estimate the forcing effects, each of which is represented by its global mean radiative forcing. The strong colinearity in time between the various anthropogenic forcings provides a technical problem that is overcome through the design of the experiment. This design uses every combination of anthropogenic forcing rather than having a few highly replicated ensembles, which is more commonly used in climate studies. Not only is this design highly efficient for a given number of integrations, but it also allows the estimation of (nonadditive) interactions between pairs of anthropogenic forcings. The simulated land surface air temperature changes since 1871 have been analyzed. The changes in natural and oceanic forcing, which itself contains some forcing from anthropogenic and natural influences, have the most influence. For the global mean, increasing greenhouse gases and the indirect aerosol effect had the largest anthropogenic effects. It was also found that an interaction between these two anthropogenic effects in the atmosphere-only GCM exists. This interaction is similar in magnitude to the individual effects of changing tropospheric and stratospheric ozone concentrations or to the direct (sulfate) aerosol effect. Various diagnostics are used to evaluate the fit of the statistical model. For the global mean, this shows that the land temperature response is proportional to the global mean radiative forcing, reinforcing the use of radiative forcing as a measure of climate change. The diagnostic tests also show that the linear model was suitable for analyses of land surface air temperature at each GCM grid point. Therefore, the linear model provides precise estimates of the space time signals for all forcing factors under consideration. For simulated 50-hPa temperatures, results show that tropospheric ozone increases have contributed to stratospheric cooling over the twentieth century almost as much as changes in well-mixed greenhouse gases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To date, a number of studies have focused on the influence of sea surface temperature (SST) on global and regional rainfall variability, with the majority of these focusing on certain ocean basins e.g. the Pacific, North Atlantic and Indian Ocean. In contrast, relatively less work has been done on the influence of the central South Atlantic, particularly in relation to rainfall over southern Africa. Previous work by the authors, using reanalysis data and general circulation model (GCM) experiments, has suggested that cold SST anomalies in the central southern Atlantic Ocean are linked to an increase in rainfall extremes across southern Africa. In this paper we present results from idealised regional climate model (RCM) experiments forced with both positive and negative SST anomalies in the southern Atlantic Ocean. These experiments reveal an unexpected response of rainfall over southern Africa. In particular it was found that SST anomalies of opposite sign can cause similar rainfall responses in the model experiments, with isolated increases in rainfall over central southern Africa as well as a large region of drying over the Mozambique Channel. The purpose of this paper is to highlight this finding and explore explanations for the behaviour of the climate model. It is suggested that the observed changes in rainfall might result from the redistribution of energy (associated with upper level changes to Rossby waves) or, of more concern, model error, and therefore the paper concludes that the results of idealised regional climate models forced with SST anomalies should be viewed cautiously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geophysical time series sometimes exhibit serial correlations that are stronger than can be captured by the commonly used first‐order autoregressive model. In this study we demonstrate that a power law statistical model serves as a useful upper bound for the persistence of total ozone anomalies on monthly to interannual timescales. Such a model is usually characterized by the Hurst exponent. We show that the estimation of the Hurst exponent in time series of total ozone is sensitive to various choices made in the statistical analysis, especially whether and how the deterministic (including periodic) signals are filtered from the time series, and the frequency range over which the estimation is made. In particular, care must be taken to ensure that the estimate of the Hurst exponent accurately represents the low‐frequency limit of the spectrum, which is the part that is relevant to long‐term correlations and the uncertainty of estimated trends. Otherwise, spurious results can be obtained. Based on this analysis, and using an updated equivalent effective stratospheric chlorine (EESC) function, we predict that an increase in total ozone attributable to EESC should be detectable at the 95% confidence level by 2015 at the latest in southern midlatitudes, and by 2020–2025 at the latest over 30°–45°N, with the time to detection increasing rapidly with latitude north of this range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present projections of winter storm-induced insured losses in the German residential building sector for the 21st century. With this aim, two structurally most independent downscaling methods and one hybrid downscaling method are applied to a 3-member ensemble of ECHAM5/MPI-OM1 A1B scenario simulations. One method uses dynamical downscaling of intense winter storm events in the global model, and a transfer function to relate regional wind speeds to losses. The second method is based on a reshuffling of present day weather situations and sequences taking into account the change of their frequencies according to the linear temperature trends of the global runs. The third method uses statistical-dynamical downscaling, considering frequency changes of the occurrence of storm-prone weather patterns, and translation into loss by using empirical statistical distributions. The A1B scenario ensemble was downscaled by all three methods until 2070, and by the (statistical-) dynamical methods until 2100. Furthermore, all methods assume a constant statistical relationship between meteorology and insured losses and no developments other than climate change, such as in constructions or claims management. The study utilizes data provided by the German Insurance Association encompassing 24 years and with district-scale resolution. Compared to 1971–2000, the downscaling methods indicate an increase of 10-year return values (i.e. loss ratios per return period) of 6–35 % for 2011–2040, of 20–30 % for 2041–2070, and of 40–55 % for 2071–2100, respectively. Convolving various sources of uncertainty in one confidence statement (data-, loss model-, storm realization-, and Pareto fit-uncertainty), the return-level confidence interval for a return period of 15 years expands by more than a factor of two. Finally, we suggest how practitioners can deal with alternative scenarios or possible natural excursions of observed losses.