985 resultados para proton-transfer compounds


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hydrogen bonding in clusters and extended layers of squaric acid molecules has been investigated by density functional computations. Equilibrium geometries, harmonic vibrational frequencies, and energy barriers for proton transfer along hydrogen bonds have been determined using the Car-Parrinello method. The results provide crucial parameters for a first principles modeling of the potential energy surface, and highlight the role of collective modes in the low-energy proton dynamics. The importance of quantum effects in condensed squaric acid systems has been investigated, and shown to be negligible for the lowest-energy collective proton modes. This information provides a quantitative basis for improved atomistic models of the order-disorder and displacive transitions undergone by squaric acid crystals as a function of temperature and pressure. (C) 2001 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The liquid structure of pyridine-acetic acid mixtures have been investigated using neutron scattering at various mole fractions of acetic acid, χHOAc = 0.33, 0.50, and 0.67, and compared to the structures of neat pyridine and acetic acid. Data has been modelled using Empirical Potential Structure Refinement (EPSR) with a ‘free proton’ reference model, which has no prejudicial weighting towards either the existence of molecular or ionised species. Analysis of the neutron scattering results shows the existence of hydrogen-bonded acetic acid chains with pyridine inclusions, rather than the formation of an ionic liquid by proton transfer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A solid-state electrochemical reactor with ceramic proton-conducting membrane has been used to study the effect of electrochemically induced hydrogen spillover on the catalytic activity of platinum during ethylene oxidation. Suitable proton-conducting electrolyte membranes (Gd-doped BaPrO 3 (BPG) and Y-doped BaZrO3 (BZY)) were fabricated. These materials were chosen because of their protonic conductivity in the operational temperature region of the reaction (400-700 °C). The BZY-based electrochemical cell was used to investigate the open-circuit voltage (OCV) dependence on H2 partial pressure with comparison being made to the theoretical OCV as predicted by the Nernst equation. Furthermore, the BZY pellets were used to study the effect of proton transfer of the catalytic activity of platinum during ethylene oxidation. The reaction was found to exhibit electrochemical promotion at 400 °C and to be electrophilic in nature, i.e. proton addition to the platinum surface resulted in an increase in reaction rate. At higher temperatures, the rate was not affected, within experimental error, by proton addition or removal. Under similar conditions, AC impedance showed that there was a large overall cell resistance at 400 °C with significantly decreased resistance at higher temperatures. It is possible that there could be a relationship between large cell resistances and the onset of electrochemical promotion in this system but there is, as yet, no conclusive evidence for this. © 2003 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Les fructose-1,6-bisphosphate aldolases (FBPA) sont des enzymes glycolytiques (EC 4.1.2.13) qui catalysent la transformation réversible du fructose-1,6-bisphosphate (FBP) en deux trioses-phosphates, le glycéraldéhyde-3-phosphate (G3P) et le dihydroxyacétone phosphate (DHAP). Il existe deux classes de FBPA qui diffèrent au niveau de leur mécanisme catalytique. Les classes I passent par la formation d’un intermédiaire covalent de type iminium alors que les classes II, métallodépendantes, utilisent généralement un zinc catalytique. Contrairement au mécanisme des classes I qui a été très étudié, de nombreuses interrogations subsistent au sujet de celui des classes II. Nous avons donc entrepris une analyse détaillée de leur mécanisme réactionnel en nous basant principalement sur la résolution de structures cristallographiques. De nombreux complexes à haute résolution furent obtenus et ont permis de détailler le rôle de plusieurs résidus du site actif de l’enzyme. Nous avons ainsi corrigé l’identification du résidu responsable de l’abstraction du proton de l’O4 du FBP, une étape cruciale du mécanisme. Ce rôle, faussement attribué à l’Asp82 (chez Helicobacter pylori), est en fait rempli par l’His180, un des résidus coordonant le zinc. L’Asp82 n’en demeure pas moins essentiel car il oriente, active et stabilise les substrats. Enfin, notre étude met en évidence le caractère dynamique de notre enzyme dont la catalyse nécessite la relocalisation du zinc et de nombreux résidus. La dynamique de la protéine ne permet pas d’étudier tous les aspects du mécanisme uniquement par l’approche cristallographique. En particulier, le résidu effectuant le transfert stéréospécifique du proton pro(S) sur le carbone 3 (C3) du DHAP est situé sur une boucle qui n’est visible dans aucune de nos structures. Nous avons donc développé un protocole de dynamique moléculaire afin d’étudier sa dynamique. Validé par l’étude d’inhibiteurs de la classe I, l’application de notre protocole aux FBPA de classe II a confirmé l’identification du résidu responsable de cette abstraction chez Escherichia coli (Glu182) mais pointe vers un résidu diffèrent chez H. pylori (Glu149 au lieu de Glu142). Nos validations expérimentales confirment ces observations et seront consolidées dans le futur. Les FBPA de classe II sont absentes du protéome humain mais sont retrouvées chez de nombreux pathogènes, pouvant même s'y révéler essentielles. Elles apparaissent donc comme étant une cible idéale pour le développement de nouveaux agents anti-microbiens. L’obtention de nouveaux analogues des substrats pour ces enzymes a donc un double intérêt, obtenir de nouveaux outils d’étude du mécanisme mais aussi développer des molécules à visée pharmacologique. En collaboration avec un groupe de chimistes, nous avons optimisé le seul inhibiteur connu des FBPA de classe II. Les composés obtenus, à la fois plus spécifiques et plus puissants, permettent d’envisager une utilisation pharmacologique. En somme, c’est par l’utilisation de techniques complémentaires que de nouveaux détails moléculaires de la catalyse des FBPA de classe II ont pu être étudiés. Ces techniques permettront d’approfondir la compréhension fine du mécanisme catalytique de l’enzyme et offrent aussi de nouvelles perspectives thérapeutiques.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aerosol physical and chemical properties were measured in a forest site in central Amazonia (Cuieiras reservation, 2.61S; 60.21W) during the dry season of 2004 (Aug-Oct). Aerosol light scattering and absorption, mass concentration, elemental composition and size distributions were measured at three tower levels (Ground: 2 m; Canopy: 28 m, and Top: 40 m). For the first time, simultaneous eddy covariance fluxes of fine mode particles and volatile organic compounds (VOC) were measured above the Amazonian forest canopy. Aerosol fluxes were measured by eddy covariance using a Condensation Particle Counter (CPC) and a sonic anemometer. VOC fluxes were measured by disjunct eddy covariance using a Proton Transfer Reaction Mass Spectrometer (PTR-MS). At nighttime, a strong vertical gradient of phosphorus and potassium in the aerosol coarse mode was observed, with higher concentrations at Ground level. This suggests a source of primary biogenic particles below the canopy. Equivalent black carbon measurements indicate the presence of light-absorbing aerosols from biogenic origin. Aerosol number size distributions typically consisted of superimposed Aitken (76 nm) and accumulation modes (144 nm), without clear events of new particle formation. Isoprene and monoterpene fluxes reached respectively 7.4 and 0.82 mg m(-2) s(-1) around noon. An average fine particle flux of 0.05 +/- 0.10 10(6) m(-2) s(-1) was calculated, denoting an equilibrium between emission and deposition fluxes of fine mode particles at daytime. No significant correlations were found between VOC and fine mode aerosol concentrations or fluxes. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cross sections for the (6)Li(p,gamma)(7)Be, (7)Li(n,gamma)(8)Li (8)Li(n,gamma)(9)Li and (8)Li(p,gamma)(9)Be capture reactions have been investigated in the framework of the potential model. The main ingredients of the potential model are the potentials used to generate the continuum and bound-state wave functions and spectroscopic factors of the corresponding bound systems. The spectroscopic factors for the (7)Li circle times n=(8)Li(gs), (8)Li circle times n=(9)Li(gs) bound systems were obtained from a FR-DWBA analysis of neutron transfer reactions induced by (8)Li radioactive beam on a (9)Be target, while spetroscopic factor for the (8)Li circle times n=(9)Be(gs) bound system were obained from a proton transfer reaction. From the obtained capture reaction cross section, reaction rate for the (8)Li(n,gamma)(9)Li and (8)Li(p,gamma)(9)Be direct neutron and proton capture were determined and compared with other experimental and calculated values.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Photochemical and photophysical properties of 1-(2-quinolyl)-2-naphthol (2QN) in water and organic solvents, as well in glassy media were studied to investigate the occurrence of intramolecular excited state prototropic reactions between the naphthol and quinoline rings. Spectral data show the two chromophores apparently behaving independently. However, in acid aqueous media or in low polarity solvents a new electronic transition red shifted band with respect to that of the parent compounds assigned to an intramolecular H-bond and to a quinoid form, respectively, shows up. Model calculations and R-X data lend support to a minimum energy conformer having a dihedral angle of similar to 39 degrees between the two groups. Singlet excited state properties (S-1) show a high suppressive effect of one ring over the other, resulting in very low emission yields at room temperature. The occurrence of excited state intramolecular proton transfer is observed in water (zwitter ion form) and in low polarity media (quinoid form) and originates from a previously CT H-bonded state. Phosphorescence data allowed a reasonable description of the electronic states of 2QN. In addition two new derivatives were prepared having the N atom blocked by methylation and both the N and O groups blocked by a CH2 bridge. The spectral data of these two compounds confirmed the attributions made for 2QN. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The biosphere emits copiously volatile organic compounds (VOCs) into the atmosphere, which are removed again depending on the oxidative capacity of the atmosphere and physical processes such as mixing, transport and deposition. Biogenic VOCs react with the primary oxidant of the atmosphere, the hydroxyl radical (OH), and potentially lead to the formation tropospheric ozone and aerosol, which impact regional climate and air quality. The rate of OH decay in the atmosphere, the total OH reactivity is a function of the atmospheric, reactive compound's concentration and reaction velocity with OH. One way to measure the total OH reactivity, the total OH sink, is with the Comparative Reactivity Method - CRM. Basically, the reaction of OH with a reagent (here pyrrole) in clean air and in the presence of atmospheric, reactive molecules is compared. This thesis presents measurements of the total OH reactivity at the biosphere-atmosphere interface to analyze various influences and driving forces. For measurements in natural environment the instrument was automated and a direct, undisturbed sampling method developed. Additionally, an alternative detection system was tested and compared to the originally used detector (Proton Transfer Reaction-Mass Spectrometer, PTR-MS). The GC-PID (Gas Chromatographic Photo-Ionization Detector) was found as a smaller, less expensive, and robust alternative for total OH reactivity measurements. The HUMPPA-COPEC 2010 measurement campaign in the Finish forest was impacted by normal boreal forest emissions as well as prolonged heat and biomass burning emissions. The measurement of total OH reactivity was compared with a comprehensive set of monitored individual species ambient concentration levels. A significant discrepancy between those individually measured OH sinks and the total OH reactivity was observed, which was characterized in detail by the comparison of within and above the forest canopy detected OH reactivity. Direct impact of biogenic emissions on total OH reactivity was examined on Kleiner Feldberg, Germany, 2011. Trans-seasonal measurements of an enclosed Norway spruce branch were conducted via PTR-MS, for individual compound's emission rates, and CRM, for total OH reactivity emission fluxes. Especially during summertime, the individually monitored OH sink terms could not account for the measured total OH reactivity. A controlled oxidation experiment in a low NOx environment was conducted in the EUPHORE reaction chamber (CHEERS, Spain 2011). The concentration levels of the reactant isoprene and its major products were monitored and compared to total OH reactivity measurements as well as to the results of two models. The individually measured compounds could account for the total OH reactivity during this experiment as well as the traditional model-degradation scheme for isoprene (MCM 3.2). Due to previous observations of high OH levels in the isoprene-rich environment of the tropics, a novel isoprene mechanism was recently suggested. In this mechanism (MIME v4) additional OH is generated during isoprene oxidation, which could not be verified in the conditions of the CHEERS experiment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

SRI is unique among known photoreceptors in that it produces opposite signals depending on the color of light stimuli. Absorption of orange light (587 nm) triggers an attractant response by the cell, whereas absorption of orange light followed by near-UV light (373 run) triggers a repellent response. Using behavioral mutants that exhibit aberrant color-sensing ability, we tested a two-conformation equilibrium model, using FRET and EPR spectroscopy. The essence of the model applied to SRI-HtrI is that the complex exists in a metastable two-conformer equilibrium which is shifted in one direction by orange light absorption (producing an attractant signal) and in the opposite direction by a second UV-violet photon (producing a repellent signal). First, by FRET we found that the E-F cytoplasmic loop of SRI moves toward the RAMP domain of the HtrI transducer during the formation of the orange-light activated signaling state of the complex. This is the first localization of a change in the physical relationship between the receptor and transducer subunits of the complex and provides a structural property of the two proposed conformers that we can monitor. Second, EPR spectra of a spin label probe at this cytoplasmic position showed shifts in the dark in the mutants toward shorter or longer EF loop-RAMP distances, explaining their behavior in terms of their mutations causing pre-stimulus shifts into one or the other conformer. ^ Next, we applied a novel electrophysiological method for monitoring the directionality of proton movement during photoactivation of SRI, to investigate the process of proton transfer in the photoactive site from the chromophore to proton acceptors on both the wildtype and aberrant color-response mutants. We observed an unexpected and critical difference in the two signaling conformations of the SRI-HtrI complex. The finding is that the vectoriality (i.e. movement away or toward the cytoplasm) of the light-induced proton transfer from the chromophore to the protein is opposite in formation of the two conformations. Retinylidene proton transfer is a common critical process in rhodopsins and these results are the first to show differences in vectoriality in a rhodopsin receptor, and to demonstrate functional importance of the direction of proton transfer. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Through the use of site-directed mutagenesis and chemical rescue, we have identified the proton acceptor for redox-active tyrosine D in photosystem II (PSII). Effects of chemical rescue on the tyrosyl radical were monitored by EPR spectroscopy. We also have acquired the Fourier–transform infrared (FT-IR) spectrum associated with the oxidation of tyrosine D and concomitant protonation of the acceptor. Mutant and isotopically labeled PSII samples are used to assign vibrational lines in the 3,600–3,100 cm−1 region to N-H modes of His-189 in the D2 polypeptide. When His-189 in D2 is changed to a leucine (HL189D2) in PSII, dramatic alterations of both EPR and FT-IR spectra are observed. When imidazole is introduced into HL189D2 samples, results from both EPR and FT-IR spectroscopy argue that imidazole is functionally reconstituted into an accessible pocket and that imidazole acts as a chemical mimic for His-189. Small perturbations of EPR and FT-IR spectra are consistent with access to this pocket in wild-type PSII, as well. Structures of the analogous site in bacterial reaction centers suggest that an accessible pocket, large enough to contain imidazole, is bordered by tyrosine D and His-189 in the D2 polypeptide. These data provide evidence that His-189 in the D2 polypeptide of PSII acts as a proton acceptor for redox-active tyrosine D and that proton transfer to the imidazole ring facilitates the efficient oxidation/reduction of tyrosine D.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The reaction center from Rhodobacter sphaeroides uses light energy for the reduction and protonation of a quinone molecule, QB. This process involves the transfer of two protons from the aqueous solution to the protein-bound QB molecule. The second proton, H+(2), is supplied to QB by Glu-L212, an internal residue protonated in response to formation of QA− and QB−. In this work, the pathway for H+(2) to Glu-L212 was studied by measuring the effects of divalent metal ion binding on the protonation of Glu-L212, which was assayed by two types of processes. One was proton uptake from solution after the one-electron reduction of QA (DQA→D+QA−) and QB (DQB→D+QB−), studied by using pH-sensitive dyes. The other was the electron transfer kAB(1) (QA−QB→QAQB−). At pH 8.5, binding of Zn2+, Cd2+, or Ni2+ reduced the rates of proton uptake upon QA− and QB− formation as well as kAB(1) by ≈an order of magnitude, resulting in similar final values, indicating that there is a common rate-limiting step. Because D+QA− is formed 105-fold faster than the induced proton uptake, the observed rate decrease must be caused by an inhibition of the proton transfer. The Glu-L212→Gln mutant reaction centers displayed greatly reduced amplitudes of proton uptake and exhibited no changes in rates of proton uptake or electron transfer upon Zn2+ binding. Therefore, metal binding specifically decreased the rate of proton transfer to Glu-L212, because the observed rates were decreased only when proton uptake by Glu-L212 was required. The entry point for the second proton H+(2) was thus identified to be the same as for the first proton H+(1), close to the metal binding region Asp-H124, His-H126, and His-H128.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Les réactions de transfert de proton se retrouvent abondamment dans la nature et sont des processus cruciaux dans plusieurs réactions chimiques et biologiques, qui se produisent souvent en milieu aqueux. Les mécanismes régissant ces échanges de protons sont complexes et encore mal compris, suscitant un intérêt des chercheurs en vue d’une meilleure compréhension fondamentale du processus de transfert. Le présent manuscrit présente une étude mécanistique portant sur une réaction de transfert de proton entre un acide (phénol fonctionnalisé) et une base (ion carboxylate) en phase aqueuse. Les résultats obtenus sont basés sur un grand nombre de simulations de dynamique moléculaire ab-initio réalisées pour des systèmes de type « donneur-pont-accepteur », où le pont se trouve à être une unique molécule d’eau, permettant ainsi l’élaboration d’un modèle cinétique détaillé pour le système étudié. La voie de transfert principalement observée est un processus ultra-rapide (moins d’une picoseconde) passant par la formation d’une structure de type « Eigen » (H9O4+) pour la molécule d’eau pontante, menant directement à la formation des produits. Une seconde structure de la molécule d’eau pontante est également observée, soit une configuration de type « Zündel » (H5O2+) impliquant l’accepteur de proton (l’ion carboxylate) qui semble agir comme un cul-de-sac pour la réaction de transfert de proton.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Les réactions de transfert de proton se retrouvent abondamment dans la nature et sont des processus cruciaux dans plusieurs réactions chimiques et biologiques, qui se produisent souvent en milieu aqueux. Les mécanismes régissant ces échanges de protons sont complexes et encore mal compris, suscitant un intérêt des chercheurs en vue d’une meilleure compréhension fondamentale du processus de transfert. Le présent manuscrit présente une étude mécanistique portant sur une réaction de transfert de proton entre un acide (phénol fonctionnalisé) et une base (ion carboxylate) en phase aqueuse. Les résultats obtenus sont basés sur un grand nombre de simulations de dynamique moléculaire ab-initio réalisées pour des systèmes de type « donneur-pont-accepteur », où le pont se trouve à être une unique molécule d’eau, permettant ainsi l’élaboration d’un modèle cinétique détaillé pour le système étudié. La voie de transfert principalement observée est un processus ultra-rapide (moins d’une picoseconde) passant par la formation d’une structure de type « Eigen » (H9O4+) pour la molécule d’eau pontante, menant directement à la formation des produits. Une seconde structure de la molécule d’eau pontante est également observée, soit une configuration de type « Zündel » (H5O2+) impliquant l’accepteur de proton (l’ion carboxylate) qui semble agir comme un cul-de-sac pour la réaction de transfert de proton.