983 resultados para proton exchange membrane


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La determinación en tiempo real de los estados críticos de operación de la pila de combustible de membrana intercambio protónico (siglas en ingles, PEM) es uno de los principales retos para los sistemas de control de pilas de combustible PEM. En este trabajo, se presenta el desarrollo e implementación de un método no invasivo de bajo coste basado en técnicas de decisión borrosa que permite estimar los estados críticos de operación de la pila de combustible PEM. La estimación se realiza mediante perturbaciones al estado de operación de la pila y el análisis posterior de la evolución temporal del voltaje generado por la pila. La implementación de esta técnica de estimulación-percepción de estado de la pila de combustible para la detección de estados críticos constituye una novedad y un paso hacia el control autónomo en óptimas condiciones de la operación de las pilas de combustible PEM.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new blend system consisting of an amorphous sulfonated poly[bis(benzimidazobenzisoquinolinones)] (SPBIBI) and the semi-crystalline poly(vinylidene fluoride) (PVDF) was prepared for proton exchange membranes. The miscibility behavior of a series of blends of SPBIBI with PVDF at various weight ratios was studied by WXRD, DSC and FTIR. The properties of the blend membranes were investigated, and it was found that the introduction of PVDF in the SPBIBI matrix altered the morphological structure of the blend membranes, which led to the formation of improved connectivity channels. For instance, the conductivity of the blend membrane containing 10 wt% PVDF displayed the highest proton conductivity (i.e., 0.086 S cm(-1)) at room temperature, a value almost twofold that of the pristine SPBIBI membranes (i.e., 0.054S cm(-1)) under identical conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to synthesize proton-conducting materials which retain acids in the membrane during fuel cell operating conditions, the synthesis of poly(vinylphosphonic acid) grafted polybenzimidazole (PVPA grafted PBI) and the fabrication of multilayer membranes are mainly focussed in this dissertation. Synthesis of PVPA grafted PBI membrane can be done according to "grafting through" method. In "grafting through" method (or macromonomer method), monomer (e.g., vinylphosphonic acid) is radically copolymerized with olefin group attached macromonomer (e.g., allyl grafted PBI and vinylbenzyl grafted PBI). This approach is inherently limited to synthesize graft-copolymer with well-defined architectural and structural parameters. The incorporation of poly(vinylphosphonic acid) into PBI lead to improvements in proton conductivity up to 10-2 S/cm. Regarding multilayer membranes, the proton conducting layer-by-layer (LBL) assembly of polymers by various strong acids such as poly(vinylphosphonic acid), poly(vinylsulfonic acid) and poly(styrenesulfonic acid) paired with basic polymers such as poly(4-vinylimidazole) and poly(benzimidazole), which are appropriate for ‘Proton Exchange Membranes for Fuel Cell’ applications have been described. Proton conductivity increases with increasing smoothness of the film and the maximum measured conductivity was 10-4 S/cm at 25°C. Recently, anhydrous proton-conducting membranes with flexible structural backbones, which show proton-conducting properties comparable to Nafion have been focus of current research. The flexible backbone of polymer chains allow for a high segmental mobility and thus, a sufficiently low glass transition temperature (Tg), which is an essential factor to reach highly conductive systems. Among the polymers with a flexible chain backbone, poly(vinylphosphonic acid), poly(vinylbenzylphosphonic acid), poly(2-vinylbenzimidazole), poly(4-styrenesulfonic acid), poly(4-vinylimidazole), poly(4-vinylimidazole-co-vinylphosphonic acid) and poly(4-vinylimidazole-co-4-styrenesulfonic acid) are interesting materials for fuel cell applications. Synthesis of polybenzimidazole with anthracene structural unit was carried out in order to avoid modification reaction in the imidazole ring, because anthracene would encourage the modification reaction with an olefin by Diels-Alder reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incorporation of phosphotungstic acid functionalized mesoporous silica in phosphoric acid doped polybenzimidazole (PA/PBI) substantially enhances the durability of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new series of layered perovskite oxides, AILaNb2O7 (A = Li, Na, K, Rb, Cs, NH4) constituting n = 2 members of the family A A′n−1BnO3n+1, has been prepared. Their structure consists of double perovskite slabs interleaved by A atoms. Hydrated HLaNb2O7 is formed by topotactic proton exchange of the A atoms in ALaNb2O7 (A = K, Rb, Cs). The hydrate readily loses water to give anhydrous HLaNb2O7 which is isostructural with RbLaNb2O7. HLaNb2O7 exhibits Bronsted acidity forming intercalation compounds with bases such as n-octylamine and pyridine.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A sulfonated poly[bis(benzimidazobenzisoquinolinones)] (SPBIBI) possessing a conjugated pyridinone ring was shown to be effective for dispersing multiwalled carbon nanotubes (MWCNTs) in DMSO. The dispersions in which the SPBIBI to MWCNTs mass ratio was 4:1 demonstrated the highest MWCNTs concentrations, i.e., 1.5-2.0 mg mL(-1), and were found to be stable for more than six months at room temperature. Through casting of these dispersions, MWCNTs/SPBIBI composite membranes were successfully fabricated on substrates as proton exchange membranes for fuel cell applications and showed no signs of macroscopic aggregation. The properties of composite membranes were investigated, and it was found that the homogeneous dispersion of the MWCNTs in the SPBIBI matrix altered the morphology structures of the composite membranes, which lead to the formation of more regular and smaller cluster-like ion domains.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The sulphonated phenol novolac (PNBS) which was used as a curing agent of epoxy was synthesised from phenol novolac (PN) and 1,4-butane sultone and confirmed by FTIR and H-1 NMR. The degree of sulphonation (DS) in PNBS was calculated by H-1 NMR. The semi-IPN membranes composed of sulphonated tetramethyl poly(ether ether ketone) (STMPEEK) (the value of ion exchange capacity is 2.01 meq g(-1)), epoxy (TMBP) and PNBS were successfully prepared. The semi-IPN membranes showed high thermal properties which were measured by differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA) With the introduction of the corss-linked TMBP/PNBS, the mechanical properties, dimensional stability, methanol resistance and oxidative stability of the membranes were improve in comparison to the pristine STMPEEK membrane.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bisphenol monomer 4-carboxylphenyl hydroquinone (4C-PH) containing carboxyl groups was synthesized by diazotization reaction of p-aminobenzoic acid and 1,4-benzoquinone and subsequent reductive reaction. Copolymerization of bisphenol A, 4C-PH, sodium 5,5'-carbonylbis(2-fluorobenzene-sulfonate) and 4,4'-difluorobenzophenone at various molar ratios through aromatic nucleophilic substitution reaction resulted in a new sulfonated poly(ether ether ketone) containing pendant carboxyl groups (C-SPEEK). The structures of the monomer 4C-PH and copolymers were confirmed by FT-IR and H-1 NMR. Flexible and transparent membranes with sulfonic and carboxylic acid groups as the proton conducting sites were prepared. The dependence of ion-exchange capacity (IEC), water uptake, proton conductivity and methanol permeability on the degree of sulfonation has been studied.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Layer-by-layer (LBL) self-assembly is a simple and elegant method of constructing organic-inorganic composite thin films from environmentally benign aqueous solutions. In this paper, we utilize this method to develop proton-exchange membranes for fuel cells. The multilayer film is constructed onto the surface of sulfonated poly(arylene ether ketone) (SPAEK-COOH) membrane by LBL self-assembly of polycation chitosan (CTS) and negatively charged inorganic particle phosphotungstic acid (VIA). The highly conductive inorganic nanoparticles ensure SPAEK-COOH-(CTS/PTA)(n) membranes to maintain high proton conductivity values up to 0.086 S cm(-1) at 25 degrees C and 0.24S cm(-1) at 80 degrees C, which are superior than previous LBL assembled electrolyte systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Image contrast in clinical MRI is often determined by differences in tissue water proton relaxation behavior. However, many aspects of water proton relaxation in complex biological media, such as protein solutions and tissue are not well understood, perhaps due to the limited empirical data. PRINCIPAL FINDINGS: Water proton T(1), T(2), and T(1rho) of protein solutions and tissue were measured systematically under multiple conditions. Crosslinking or aggregation of protein decreased T(2) and T(1rho), but did not change high-field T(1). T(1rho) dispersion profiles were similar for crosslinked protein solutions, myocardial tissue, and cartilage, and exhibited power law behavior with T(1rho)(0) values that closely approximated T(2). The T(1rho) dispersion of mobile protein solutions was flat above 5 kHz, but showed a steep curve below 5 kHz that was sensitive to changes in pH. The T(1rho) dispersion of crosslinked BSA and cartilage in DMSO solvent closely resembled that of water solvent above 5 kHz but showed decreased dispersion below 5 kHz. CONCLUSIONS: Proton exchange is a minor pathway for tissue T(1) and T(1rho) relaxation above 5 kHz. Potential models for relaxation are discussed, however the same molecular mechanism appears to be responsible across 5 decades of frequencies from T(1rho) to T(1).