858 resultados para protein synthesis inhibition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OSAN, R. , TORT, A. B. L. , AMARAL, O. B. . A mismatch-based model for memory reconsolidation and extinction in attractor networks. Plos One, v. 6, p. e23113, 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OSAN, R. , TORT, A. B. L. , AMARAL, O. B. . A mismatch-based model for memory reconsolidation and extinction in attractor networks. Plos One, v. 6, p. e23113, 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When ciliogenesis first occurs in sea urchin embryos, the major building block proteins, tubulin and dynein, exist in substantial pools, but most 9+2 architectural proteins must be synthesized de novo. Pulse-chase labeling with [3H]leucine demonstrates that these proteins are coordinately up-regulated in response to deciliation so that regeneration ensues and the tubulin and dynein pools are replenished. Protein labeling and incorporation into already-assembled cilia is high, indicating constitutive ciliary gene expression and steady-state turnover. To determine whether either the synthesis of tubulin or the size of its available pool is coupled to the synthesis or turnover of the other 9+2 proteins in some feedback manner, fully-ciliated mid- or late-gastrula stage Strongylocentrotus droebachiensis embryos were pulse labeled in the presence of colchicine or taxol at concentrations that block ciliary growth. As a consequence of tubulin autoregulation mediated by increased free tubulin, no labeling of ciliary tubulin occurred in colchicine-treated embryos. However, most other proteins were labeled and incorporated into steady-state cilia at near-control levels in the presence of colchicine or taxol. With taxol, tubulin was labeled as well. An axoneme-associated 78 kDa cognate of the molecular chaperone HSP70 correlated with length during regeneration; neither colchicine nor taxol influenced the association of this protein in steady-state cilia. These data indicate that 1) ciliary protein synthesis and turnover is independent of tubulin synthesis or tubulin pool size; 2) steady-state incorporation of labeled proteins cannot be due to formation or elongation of cilia; 3) substantial tubulin exchange takes place in fully-motile cilia; and 4) chaperone presence and association in steady-state cilia is independent of background ciliogenesis, tubulin synthesis, and tubulin assembly state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atrophy of skeletal muscle is due to a depression in protein synthesis and an increase in degradation. Studies in vitro have suggested that activation of the dsRNA-dependent protein kinase (PKR) may be responsible for these changes in protein synthesis and degradation. In order to evaluate whether this is also applicable to cancer cachexia the action of a PKR inhibitor on the development of cachexia has been studied in mice bearing the MAC16 tumour. Treatment of animals with the PKR inhibitor (5 mg kg-1) significantly reduced levels of phospho-PKR in muscle down to that found in non-tumour-bearing mice, and effectively attenuated the depression of body weight, with increased muscle mass, and also inhibited tumour growth. There was an increase in protein synthesis in skeletal muscle, which paralleled a decrease in eukaryotic initiation factor 2α phosphorylation. Protein degradation rates in skeletal muscle were also significantly decreased, as was proteasome activity levels and expression. Myosin levels were increased up to values found in non-tumour-bearing animals. Proteasome expression correlated with a decreased nuclear accumulation of nuclear factor-κB (NF-κB). The PKR inhibitor also significantly inhibited tumour growth, although this appeared to be a separate event from the effect on muscle wasting. These results suggest that inhibition of the autophosphorylation of PKR may represent an appropriate target for the attenuation of muscle atrophy in cancer cachexia. © 2007 Cancer Research UK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Progression to the castration-resistant state is the incurable and lethal end stage of prostate cancer, and there is strong evidence that androgen receptor (AR) still plays a central role in this process. We hypothesize that knocking down AR will have a major effect on inhibiting growth of castration-resistant tumors. Experimental Design: Castration-resistant C4-2 human prostate cancer cells stably expressing a tetracycline-inducible AR-targeted short hairpin RNA (shRNA) were generated to directly test the effects of AR knockdown in C4-2 human prostate cancer cells and tumors. Results:In vitro expression of AR shRNA resulted in decreased levels of AR mRNA and protein, decreased expression of prostate-specific antigen (PSA), reduced activation of the PSA-luciferase reporter, and growth inhibition of C4-2 cells. Gene microarray analyses revealed that AR knockdown under hormone-deprived conditions resulted in activation of genes involved in apoptosis, cell cycle regulation, protein synthesis, and tumorigenesis. To ensure that tumors were truly castration-resistant in vivo, inducible AR shRNA expressing C4-2 tumors were grown in castrated mice to an average volume of 450 mm3. In all of the animals, serum PSA decreased, and in 50% of them, there was complete tumor regression and disappearance of serum PSA. Conclusions: Whereas castration is ineffective in castration-resistant prostate tumors, knockdown of AR can decrease serum PSA, inhibit tumor growth, and frequently cause tumor regression. This study is the first direct evidence that knockdown of AR is a viable therapeutic strategy for treatment of prostate tumors that have already progressed to the castration-resistant state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of estrogen (E) modulation of retinol-binding protein (RBP) production in the liver of immature chicks were compared with those governing de novo induction of riboflavin carrier protein (RCP) in the same tissue. A single dose of E markedly enhanced the plasma levels of RBP without any detectable lag period to reach peak value by 24 h and this was followed by a decline to attain the baseline by 4 days. There was no amplification of the response during secondary stimulation unlike the case with RCP induction. With multiple E administration, the 4-fold increased plasma RBP concentrations were sustained at a steady state during both primary and secondary stimulations, whereas concomitant RCP concentration progressively increased with each hormone administration and this response was further amplified during secondary stimulation. Unlike RCP induction, enhanced RBP accumulation was not strictly E dose dependent although a minimal threshold level of the steroid was required to elicit measurable response. Progesterone (P) could neither modulate nor substitute for E in enhancing plasma levels of either of the 2 proteins while the anti-estrogens, en- and zuclomifene citrate severely suppressed the production of both the proteins. RCP induction was completely inhibited by both α-amanitin and cycloheximide for prolonged periods while E-stimulated RBP production was affected only partially by α-amanitin. Likewise, cycloheximide inhibition of RBP accumulation followed a pattern similar to that of hepatic general protein synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of estrogen-induced accumulation of riboflavin-carrier protein in the plasma was investigated in immature male rats using a specific and sensitive homologous radio-immunoassay procedure developed for this purpose. Following a single injection of the steroid hormone, plasma riboflavin-carrier protein levels increased markedly after an initial lag period of approximately 24 h, reaching peak levels around 96 h and declining thereafter. A 1.5 fold amplification of the inductive response was evident on secondary stimulation with the hormone. The magnitude of the response was dependent on hormonal dose, whereas the initial lag phase and the time of peak riboflavin-carrier protein induction were unaltered within the range of the steroid doses (0.1–10 mg/ kg body wt.) tested. Simultaneous administration of progesterone did not affect either the kinetics or the maximum level of the protein induced. The hormonal specificity of this induction was further adduced by the effect of administration of antiestrogens viz., En and Zu chlomiphene citrates, which effectively curtailed hormonal induction of the protein. That the induction involvedde novo-protein synthesis was evident from the complete inhibition obtained upon administration of cycloheximide. Passive immunoneutralization of endogenous riboflavin-carrier protein with antiserum to the homologous protein terminated pregnancy in rats confirming the earlier results with antiserum to chicken riboflavin-carrier protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of aqueous pyridine on a hapten—antihapten system was investigated by the quantitative precipitin reaction and by the membrane filtration method. It was found that dilute solutions of pyridine inhibited the reaction between isopentenyladenosine and its antiserum. Other solvents examined were less effective. The effect of pyridine was reversible at concentrations where complete inhibition occurred, thus indicating its use for the dissociation of antigen—antibody complexes. The inhibitory effect of pyridine was exploited in a single-step purification method for anti—isopentenyladenosine and antideoxy-adenylate antibodies. In addition, generally applicable methods for linking nucleosides and nucleotides to aminoethyl-Sepharose are described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

5-Fluorouracil (5FU), an analogue of uracil, was found to inhibit the production of infectious particles of rinderpest virus (RPV) in Vero cells (African green monkey kidney cells) by 99%, at a concentration of 1 μg/ml. The levels of individual mRNA specific for five of the virus genes were also reduced drastically, while the level of mRNA for a cellular housekeeping gene—glyceraldehyde-3-phosphate dehydrogenase (GAPDH)—was unaltered by fluorouracil treatment of infected cells. Both virus RNA and protein synthesis showed inhibition in a dose-dependent manner. The virions which budded out of 5-fluorouracil-treated cells also contained reduced amounts of virus proteins compared with virus particles from untreated cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The in vitro incorporation of [3H]uridine into RNA and [3H]leucine into protein in slices of porcine thyroid was studied. Thyrotropin (10-500 mU/ml of medium), when added with [3H]uridine, inhibited incorporation into RNA, but as little as 10 mU of thyrotropin per ml stimulated incorporation of [3H]orotic acid into RNA. Uridine kinase (EC 2.7.1.48) was found to be inhibited in slices incubated with thyrotropin whereas UMP 5′ nucleotidase (EC 2.1.3.5) was not. Preincubation of slices with thyrotropin (5-50 mU/ml) led to enhanced incorporation of subsequently added [3H]uridine and [3H]leucine. When slices were preincubated with long-acting thyroid stimulator-IgG (2.5 or 5 mg per ml of medium) incorporation of [3H]uridine and [3H]leucine was similarly enhanced, with the smaller concentration being more effective. Without preincubation these stimulatory effects were mimicked by 1 mM dibutyryl 3′,5′-AMP and, to a lesser extent, 1 mM 3′,5′-AMP. AMP and ATP also stimulated [3H]uridine incorporation in this system but only after more prolonged periods of incubation than were required for the other nucleotides. RNA polymerase (EC 2.7.7.6) activity measured in isolated thyroid nuclei had two components, one Mg2+-stimulated and the other requ ring Mn2+ and high salt content [0.4 M (NH4)2SO4]. These activities, and particularly the former, were enhanced if thyroid slices were incubated with thyrotropin (5-100 mU/ml of medium), 2.5 mg or 5.0 mg of long-acting thyroid stimulator-IgG per ml, or 1 mM dibutyryl 3′,5′-AMP, before isolatior of the nuclei and measurement of enzyme activities; 1 mM AMP, ADP, or 2′,3′-GMP had no influence. Added directly to the nuclei, thyrotropin, long-acting thyroid stimulator-IgG, and dibutyryl 3′,5′-AMP had no effect on RNA polymerase activities. These data are seen as affording evidence for mediation by 3′,5′-AMP of effects of thyrotropin and long-acting thyroid stimulator on thyroid RNA and protein synthesis, at least in part through an indirect stimulation of nuclear RNA polymerase activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There was no difference in the incorporation of S-35 label into proteins of T4 and amber B17 phage grown on Escherichia coli B. The head protein peak was absent in the polyacrylamide gel electrophoretic profile of the S-35 labeled proteins of amber B17 grown on non-permissive host, E.coli B. However, an increase of 15–70% in the synthesis of other phage proteins of amber B17 over that of T4 phage was observed. The lysozyme activity increased by two fold in amber B17 in comparison with that of T4 phage grown on E.coli B. These results imply that in the absence of head protein synthesis by amber mutant there was an increase in the synthesis of other phage proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinetic data on inhibition of protein synthesis in thymocyte by three abrins and ricin have been obtained. The intrinsic efficiencies of A chains of four toxins to inactivate ribosomes, as analyzed by k1-versus-concentration plots were abrin II, III > ricin > abrin I. The lag times were 90, 66, 75 and 105 min at a 0.0744 nM concentration of each of abrin I, II, III and ricin, respectively. To account for the observed differences in the dose-dependent lag time, functional and structural variables of toxins such as binding efficiency of B chains to receptors and low-pH-induced structural alterations have been analyzed. The association constants obtained by stopped flow studies showed that abrin-I (4.13 × 105 M−1 s−1) association with putative receptor (4-methylumbelliferyl-α-D-galactoside) is nearly two times more often than abrin III (2.6 × 105 M−1 s−1) at 20°C. Equillibrium binding constants of abrin I and II to thymocyte at 37°C were 2.26 × 107 M−1 and 2.8 × 107 M−1 respectively. pH-induced structural alterations as studied by a parallel enhancement in 8-anilino-L-naphthalene sulfonate fluorescence revealed a high degree of qualitative similarity. These results taken with a nearly identical concentration-independent lag time (minimum lag of 41–42 min) indicated that the binding efficiencies and internalization efficiencies of these toxins are the same and that the observed difference in the dose-dependent lag time is causally related to the proposed processing event. The rates of reduction of inter-subunit disulfide bond, an obligatory step in the intoxication process, have been measured and compared under a variety of conditions. Intersubunit disulfide reduction of abrin I is fourfold faster than that of abrin II at pH 7.2. The rate of disulfide reduction in abrin I could be decreased 1 I-fold by adding lactose, compared to that without lactose. The observed differences in the efficiencies of A chains, the dose-dependent lag period, the modulating effect of lactose on the rates of disulfide reduction and similarity in binding properties make the variants a valuable tool to probe the processing events in toxin transport in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning and memory are exquisitely sensitive to behavioral stress, but the underlying mechanisms are still poorly understood. Because activity-dependent persistent changes in synaptic strength are believed to mediate memory processes in brain areas such as the hippocampus we have examined the means by which stress affects synaptic plasticity in the CA1 region of the hippocampus of anesthetized rats, Inescapable behavioral stress (placement on an elevated platform for 30 min) switched the direction of plasticity, favoring low frequency stimulation-induced decreases in synaptic transmission (long-term depression, LTD), and opposing the induction of long-term potentiation by high frequency stimulation, We have discovered that glucocorticoid receptor activation mediates these effects of stress on LTD and longterm potentiation in a protein synthesis-dependent manner because they were prevented by the glucocorticoid receptor antagonist RU 38486 and the protein synthesis inhibitor emetine. Consistent with this, the ability of exogenously applied corticosterone in non-stressed rats to mimic the effects of stress on synaptic plasticity was also blocked by these agents, The enablement of low frequency stimulation-induced LTD by both stress and exogenous corticosterone was also blocked by the transcription inhibitor actinomycin D, Thus, naturally occurring synaptic plasticity is liable to be reversed in stressful situations via glucocorticoid receptor activation and mechanisms dependent on the synthesis of new protein and RNA, This indicates that the modulation of hippocampus-mediated learning by acute inescapable stress requires glucocorticoid receptor-dependent initiation of transcription and translation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of thymidine kinase (TK) is a feature of many large DNA viruses. Here, a TK gene homologue was cloned and characterized from Rana grylio virus (RGV), a member of family Iridoviridae. RGV TK encodes a protein of 195 aa with a predicted molecular mass of 22.1 kDa. Homologues of the protein were present in all the currently sequenced iridoviruses, and phylogenetic analysis showed that it was much close to cellular TK type 2 (TK2), deoxycytidine kinase (dCK) and deoxyguanosine kinase (dGK). Subsequently, Western blotting revealed TK expression increased with time from 6 h post-infection in RGV-infected cells. Using drug inhibition analysis by protein synthesis inhibitor (cycloheximide) and DNA replication inhibitor (cytosine arabinofuranoside), RGV TK was classified as the early expression gene during in vitro infection. Subcellular localization by TK-GFP fusion protein expression and immunofluorescence staining showed RGV TK was an exclusively cytoplasmic protein in fish cells. Collectively, current data indicate that RGV TK was an early gene of iridovirus which encoded a cytoplasmic protein in fish cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The double-stranded RNA (dsRNA)-dependent protein kinase PKR is thought to mediate a conserved antiviral pathway by inhibiting viral protein synthesis via the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2 alpha). However, little is known about the data related to the lower vertebrates, including fish. Recently, the identification of PKR-like, or PKZ, has addressed the question of whether there is an orthologous PKR in fish. Here, we identify the first fish PKR gene from the Japanese flounder Paralichthys olivaceus (PoPKR). PoPKR encodes a protein that shows a conserved structure that is characteristic of mammalian PKRs, having both the N-terminal region for dsRNA binding and the C-terminal region for the inhibition of protein translation. The catalytic activity of PoPKR is further evidence that it is required for protein translation inhibition in vitro. PoPKR is constitutively transcribed at low levels and is highly induced after virus infection. Strikingly, PoPKR overexpression increases eIF2 alpha phosphorylation and inhibits the replication of Scophthalmus maximus rhabdovirus (SMRV) in flounder embryonic cells, whereas phosphorylation and antiviral effects are impaired in transfected cells expressing the catalytically inactive PKR-K421R variant, indicating that PoPKR inhibits virus replication by phosphorylating substrate eIF2 alpha. The interaction between PoPKR and eIF2 alpha is demonstrated by coimmunoprecipitation assays, and the transfection of PoPKR-specific short interfering RNA further reveals that the enhanced eIF2 alpha phosphorylation is catalyzed by PoPKR during SMRV infection. The current data provide significant evidence for the existence of a PKR-mediated antiviral pathway in fish and reveal considerable conservation in the functional domains and the antiviral effect of PKR proteins between fish and mammals.